<table>
<thead>
<tr>
<th>Registry File Nos:</th>
<th>Geological Survey No:</th>
</tr>
</thead>
<tbody>
<tr>
<td>775:3316</td>
<td>012H/16/2229</td>
</tr>
</tbody>
</table>

Confidential Until: 2016-11-14

Mineral Rights:
- [x] Licence
- [] Extended Licence
- [] Impost
- [] Mining Lease
- [] Regional
- [] Other

<table>
<thead>
<tr>
<th>Licence/Property</th>
<th>No. of Claims</th>
<th>Assessment Year</th>
<th>Date Issued</th>
<th>NTS Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>20356M</td>
<td>9</td>
<td>1</td>
<td>2012-07-16</td>
<td>12H16</td>
</tr>
</tbody>
</table>

Number of Volumes:

Digital Copy Only: [x]

Enclosures (indicate number of each):

- CD: ________
- DVD: ________
- Flash drive: ________
- Paper Maps: ________
- Other: __________________________

Received: 2013-11-14

Comments:

Signed: [Signature]

Date: November 17, 2016
1st Year Assessment Report
on
Licence 020356M
Baie Verte Peninsula, Newfoundland
NTS 12H/16

Prepared for

Kenneth J. Lewis

By

Spencer Vatcher, P.Geo.
Silvertip Exploration Consultants Incorporated

and

Michelle J. Parsons

November, 2013

Required Expenditures: $1,800.00
Actual Expenditures: $18,577.73
Table of Contents

1.0 Introduction .. 2
2.0 Property Description and Location .. 2
3.0 Accessibility and Infrastructure .. 2
4.0 History of Mineral Exploration .. 3
 4.1 Overview .. 3
 4.2 Academic and Government Surveys) ... 4
5.0 Geological Setting ... 6
 5.1 Regional Geological Setting ... 6
 5.2 Regional Deformation ... 8
 5.3 Property Geology .. 9
6.0 Deposit Types ... 9
7.0 Exploration Program .. 10
 7.1 Diamond Drilling .. 10
8.0 Results and Recommendations .. 11
9.0 References .. 13

List of Figures

Figure 1 Map showing location of the Licence 020356M, Baie Verte area. ... 3
Figure 2 Tectonostratigraphic map of Newfoundland (Hayes, 1987). .. 7
Figure 3 Drill hole locations .. 10

List of Tables

Table 1 Diamond-drill hole data. .. 11
Table 2 Exploration expenditures Licence 020356M .. 12

List of Appendix

Appendix 1 .. 21
Appendix 2 Assay Certificate(s) ... 27
1.0 Introduction

This report summarizes the exploration activities completed on Licence 020356M during 2012-2013. The licences were staked in July of 2012 by Kenneth J. Lewis of Baie Verte, Newfoundland and Labrador.

2.0 Property Description and Location

The property consists of a total of 9 claims in one Licence covering 225 hectares and lies entirely within the town limits of Baie Verte, Newfoundland & Labrador (Figure 1). The licence details are described in Table 1.

3.0 Accessibility and Infrastructure

The Baie Verte Peninsula lies on the northeast coast of Newfoundland and is linked to the Trans-Canada Highway via Route 410. Baie Verte, the region’s largest town, lies approximately 65 km north of the Trans-Canada Highway. The area has a long mining and forestry history with Baie Verte the major service center. The town provides major infrastructure with a regional hospital, restaurants, hotels, banking services and heavy equipment providers.

The licence lies at the junction of the Baie Verte Highway (Route 410) and Wild Cove Road (Route 12), with the southern boundary of the licence intersecting Baie Verte Brook.

The area is covered by a mixture of dense scrub (black spruce and balsam fir), old cutovers and bog. The terrain is very rugged with an average elevation of about 200 m. Overburden varies from less than 0.5m up to greater than 5m in some of the linear valleys. Outcrop exposure is typically less than 5 percent inland, but is greatly improved along coastal areas.
4.0 History of Mineral Exploration

4.1 Overview

The Baie Verte Peninsula has an extensive mining and mineral exploration history dating back to the mid-1800s when copper mineralization was discovered near Baie Verte (Terra Nova Mine), Tilt Cove and Betts Cove. These mines operated intermittently until about the First World War. The Terra Nova Mine which lies adjacent to the property operated intermittently between 1862 until 1907 and produced less than 200,000 tons of copper ore at an average grade of 2.4% copper. In the late 1950s there was renewed interest in copper and mining was resumed at Tilt Cove from 1957 to 1967. The Advocate Asbestos Mine located, several kms north of Baie Verte, operated between 1964 and 1990 and produced an average of 700 tons of ore per day. The Rambler deposits south of Ming’s Bight were developed and produced from 1961 until 1982 and again from 1995 to 1996. Rambler Metals and Mining Canada Ltd. is currently mining the
deeper levels of the Ming deposit and is considering developing the low grade footwall deposit beneath the Ming ore body.

In the mid-1980s, following the discovery of the Hope Brook gold deposit on the south coast of Newfoundland, exploration companies began to focus on the islands gold potential. The geological setting of the Baie Verte Peninsula drew comparison to the Californian Mother Lode Belt. Exploration focused along the Baie Verte Line, including the Baie Verte and Ming’s Bight areas. This intensive period of exploration produced approximately 120 new gold discoveries including: the Deer Cove deposit, discovered by Noranda in 1986; the Dorset showing, discovered by Noranda in 1987; the Romeo and Juliet prospect and the Lightning Zone, discovered by South Coast Resources Inc. and Varna Gold Inc. in 1987 and 1988 respectively; and the Stog’er Tight deposit discovered by Noranda in 1988. Subsequent exploration adjacent to the Lightning Zone outlined the Thunder Zone; collectively referred to as the Pine Cove deposit. In the 2008, Anaconda Gold Corporation commissioned the Pine Cove open pit mine with an indicated resource of 2.63 million tonnes grading 2.93 g/t gold and an inferred resource of 254,150 tonnes grading 2.11 g/t gold. There have been two unsuccessful attempts at mining the Stog’er Tight deposit (Evans, 2013).

During 1997-1998, British Canadian Mines conducted a Magnetic and Transient Pulse EM survey over the Terra Nova Property, which extended immediately NE from the abandoned Terra Nova Mine. The survey identified a magnetic high that paralleled a northeast trending structural fabric, and the pulse EM outlined a 900m long 8-channel conductor in the western part of the property. Subsequent interpretation suggested that these conductors were the result of formational features (Bradley, 2000).

4.2 Academic and Government Surveys (after Evans, 2013)

The geology and mineral deposits of the Baie Verte Peninsula have been the focus of an extensive list of government and academic studies.

Reports of gold mineralization from the Ming’s Bight area was first documented in the reports of the Geological Survey of Newfoundland (Murray and Howley, 1881).

Snelgrove (1935) described the Goldenville Mine in his study of Newfoundland gold deposits. In 1939, K. Watson studied the geology and mineral deposits of the Baie Verte and Ming’s Bight area (Watson, 1947).

Rose (1945) mapped the Baie Verte greenstones between the Rambler and Ming’s Bight area as part of a M.Sc. study.

Baird (1945) assessed the mineral potential of the Ming’s Bight –Pacquet Harbour area.
In 1957, the Geological Survey of Canada included the area in 1:250,000 scale geological mapping that eventually covered the Baie Verte Peninsula (Neale, 1958).

In the late 1970s the Department of Mines and Energy carried out a geological, geochemical and geophysical evaluation of the Barry and Cunningham Fee Simple Mining Grant (Howse and Collins, 1978) after the property reverted to the Crown.

Frew (1971) examined the petrography and geochemistry of the Goldenville area as part of a B.Sc. thesis at Memorial University.

Norman (1973) studied the geology and petrochemistry of the ophiolitic rocks exposed near Ming’s Bight as part of a M.Sc. thesis study.

Kidd (1974) studied the evolution of the Baie Verte Lineament as part of a Ph.D. thesis at Cambridge University. This work formed the basis for a paper by Kidd et. al., (1978), which described the geology of the ophiolitic rocks of the Ming’s Bight area.

Fitzpatrick (1981) examined the geology and mineral potential of the upper ophiolitic rocks near Ming’s Bight as part of a B.Sc. thesis at Memorial University.

In 1983, J. Hibbard produced a memoir on the geology and mineral deposits of the Baie Verte Peninsula which has served as the bench mark for subsequent geologic work on the peninsula.

Patey (1990) documented the Paleozoic mesothermal lode-gold mineralization, Deer Lode deposit as part of a B.Sc. thesis at Memorial University.

Ramezani (1992) documented the geology, geochemistry and U-Pb geochronology of the Stog’er Tight Gold Prospect as part of a M.Sc. thesis at Memorial University.

Several Baie Verte Peninsula gold occurrences were included in a regional study of Newfoundland gold deposits by the Geological Survey of Canada. Kirkwood and Dubé (1992) documented the structural control of sill-hosted gold mineralization at the Stog’er Tight Gold Deposit. Dubé et. al., (1993) described the Deer Cove deposit as an example of “thrust”- related breccia-vein type gold mineralization.

Evans (1996) documented the gold mineralization of the Baie Verte Peninsula as part of a regional study of Newfoundland gold deposits carried by the Newfoundland Department of Mines and Energy.
The Geological Survey of Canada, as part of its Targeted Initiatives Program (TGI3), carried out detailed geological mapping and structural and geochronological studies on the Baie Verte Peninsula (Skulski et al. 2010) including detailed studies on the Ming’s Bight Peninsula (Castonguay et al., 2009; Escayola et al., 2009).

5.0 Geological Setting (after Evans, 2012)

5.1 Regional Geological Setting

The island of Newfoundland forms part of the extensive Paleozoic Appalachian-Caledonian Orogenic Belt. Williams (1964) was the first to recognize the tripartite nature of the Newfoundland portion of this orogenic belt. The island can be subdivided into three broad geological zones, which represent a two-sided orogenic system. These zones, which include the Western platform, the Central Mobile Belt and the Avalon platform, are related to the Iapetan Wilson Cycle; the formation and destruction of a late Precambrian - early Paleozoic ocean known as Iapetus (Harland and Gayer, 1972). The orogenic belt is now subdivided into Humber, Dunnage, Gander and Avalon tectonostratigraphic zonal subdivisions (Williams, 1979; Williams et al., 1988; Figure 2).

The Humber Zone represents the passive continental margin of Paleozoic North America and it comprises self-facies carbonate and siliciclastic rocks deposited upon crystalline Precambrian basement. The Dunnage Zone is often referred to as the vestiges of Iapetus as it contains sequences of ophiolitic and volcanic, volcanioclastic and sedimentary rocks of island arc and back-arc origins. The Gander Zone comprises sedimentary rocks deposited at or near the eastern Iapetan margin, proximal to the Gandwana continent. The Avalon Zone is comprised of
Neoproterozoic volcanic, sedimentary and plutonic rocks which are overlain by early Paleozoic platformal sedimentary rocks.

The Dunnage Zone is bounded on the west by the Baie Verte - Brompton Line and to the east by the Grub Line (Gander River Complex). Williams et. al. (1988) further subdivided the Dunnage Zone, based on contrasting geological elements, into Notre Dame and Exploits subzones. The two subzones formed independently, possibly on opposite sides of Iapetus, and were not linked until the late Llanvirn-early Llandeilo along the extensive Red Indian Line fault system. The Baie Verte Peninsula occupies portions of both the Humber Zone and the Notre Dame Subzone. Rocks of these zones form two contrasting and distinct structural and lithic belts which are
separated by a major arcuate, structural zone known as the Baie Verte Line (Hibbard, 1983). Rocks to the west of the Baie Verte Line belong to the Fleur de Lys Belt. This belt is part of the Humber Zone and comprises a sequence of polydeformed Neoproterozoic to Lower Ordovician schists and gneisses, formed in a continental-rise prism which developed along the eastern margin of Laurentia. The belt can be subdivided into three main lithic sequences: i) high grade metamorphic basement rocks of the East Pond Metamorphic Suite; ii) a metaclastic cover sequence referred to as the Fleur de Lys Supergroup; and iii) post-kinematic granitic intrusive rocks of the Devonian Wild Cove Pond Igneous Suite.

The rocks lying to the east of the Baie Verte Line belong to the Baie Verte Belt of the Notre Dame Subzone. This belt is comprised of four main lithic elements: i) Cambro-Ordovician ophiolitic sequences of the Advocate, Point Rousse and Betts Cove complexes and the Pacquet Harbour Group; ii) Ordovician volcanic cover sequences of the Flat Water Pond and Snooks Arm groups and parts of the Advocate and Point Rousse complexes and the Pacquet Harbour Group; iii) Silurian terrestrial volcanic and sedimentary rocks of the Micmac Lake and Cape St. John groups and the Kings Point Complex, which unconformably overlie the Ordovician sequences; and iv) Siluro-Devonian intrusive rocks (e.g. the Burlington Granodiorite, Kings Point Complex, Dunamagon Granite and the Cape Brule Porphyry). The Cambro-Ordovician sequences represent vestiges of Iapetus and are interpreted to have formed in supra-subduction zone ophiolitic and primitive island-arc environments (Jenner and Fryer, 1980, Swinden, 1991, Piercey et al., 1997, and Bédard et al., 1997).

Regionally the geology of the Baie Verte Peninsula can be correlated southwards to the Glover Island area of Grand Lake, where rocks of both the Humber and Dunnage zones are juxtaposed (Cawood and van Gool, 1993). The boundary between the zones is defined by the Keystone shear zone which is part of the Baie Verte-Brompton Line. On Glover Island the Dunnage Zone sequences are host to thirteen significant epigenetic, structurally-controlled gold prospects (Barbour and French, 1993).

5.2 Regional Deformation

Hibbard (1983) defined the Baie Verte Line as a tectonic zone, which separates the Fleur de Lys and Baie Verte belts, considered to be the early Paleozoic continent-ocean interface. Regionally all pre-Carboniferous lithologies and structures on the Baie Verte Peninsula, including the Baie Verte Line, are folded around a major structure referred to as the Baie Verte Flexure (Hibbard, 1983). Structural and lithological trends vary from north-northeast, south of Baie Verte, to east-west, east of Baie Verte. This flexure is interpreted to be a primordial feature which reflected the shape of the ancient Laurentian continental margin.
The Baie Verte Line exhibits a protracted history of deformation. Initial movement along the line was the result of westward directed thrusting of the Baie Verte ophiolitic rocks over the Fleur de Lys Belt in the Ordovician. Three phases of deformation are present within the Fleur de Lys Belt and Ordovician thrusting was responsible for much of this deformation and metamorphism. Regionally these rocks have been metamorphosed in the upper green-schist to middle amphibolite facies. Based on radiometric cooling ages for metamorphic minerals deformation within most of the Fleur de Lys Belt is interpreted to be related to westward obduction of the Taconic allochthons (Hibbard, 1983). Evidence within the Fleur de Lys Belt for this obduction includes the emplacement of ultramafic rocks along shear zones and pre-kinematic ophiolitic melanges that are thought to mark the early onset of imbrication of the ophiolitic complexes. The ophiolitic Birchy Complex of the Fleur de Lys Supergroup is interpreted to have formed the lower portions of an imbricate stack which overrode the Fleur de Lys rocks during the Early Ordovician (Hibbard et. al., 1995). Subsequent Siluro-Devonian deformation centred on the Baie Verte Line and served to accentuate the structural zone. South of Baie Verte a system of late faults, which collectively form the Baie Verte Road Fault system (Hibbard, 1983), follow the trace of the Baie Verte Line. These younger faults typically exhibit reverse, west-over-east polarities. This reversal in structural polarity produced much of the deformation observed within the Baie Verte Belt. Regionally the belt has been metamorphosed up to the lower greenschist facies and the rocks typically display a single penetrative fabric.

Strike-slip movements related to Carboniferous deformation may have further modified the various faults, in particular the Baie Verte Road Fault System (Hibbard, 1983; Goodwin and Williams, 1990).

5.3 Property Geology

The property itself is underlain by rocks of both the Humber (extreme western part of the property) and Dunnage (central and eastern part of the property) tectonostratigraphic zones. The very western part of the property is underlain by late Cambrian to early Ordovician-aged siliciclastic schist units of the Fleur de Lys Supergroup, while the remainder of the property is underlain by Cambrian to Ordovician-aged rocks of the Advocate Complex which is interpreted as consisting of strongly deformed mafic and ultramafic plutonic rocks, volcanic to volcanoclastic rocks, and dark grey-black slates.

6.0 Deposit Types

The historic Terra Nova mine is the closest known deposit to the property (located immediately southeast of the property) and this deposit is hosted by a chlorite schist containing disseminated and stringer pyrite and pyrrhotite. Murray (1881) described the deposit as…”a stratified mass of iron and copper pyrites, with intercalations of hard clay slates…” . The ore is generally massive
and both coliform and banded consisting of pyrite, pyrrhotite, chalcopyrite, sphalerite and minor aresenopyrite.

7.0 Exploration Program

7.1 Diamond Drilling

In May of 2012, Ken Lewis carried out a small diamond-drill program consisting of two NQ-size diamond drill holes (Figure 3) totalling 207.5m. Drilling was completed by Zenith Drilling Ltd. of Baie Verte, NL.

Figure 3 Drill hole locations
<table>
<thead>
<tr>
<th>Hole</th>
<th>UTM E</th>
<th>UTM N</th>
<th>NAD 27</th>
<th>Elev (m)</th>
<th>Azimuth</th>
<th>Dip</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE 12-7</td>
<td>555093</td>
<td>5530323</td>
<td>NAD 27</td>
<td>33</td>
<td>312</td>
<td>-55</td>
<td>59.1</td>
</tr>
<tr>
<td>TE-12-8</td>
<td>555091</td>
<td>5530323</td>
<td>NAD 27</td>
<td>34</td>
<td>0</td>
<td>-90</td>
<td>148.4</td>
</tr>
</tbody>
</table>

Table 1 Diamond-drill hole data.

8.0 Results and Recommendations

A total of 11 samples were sent for assay at Eastern Analytical Limited in Springdale, NL. While the drilling failed to intersect significant mineralization, all 11 samples showed weakly anomalous copper and zinc. Gold values were also low with 5 samples assaying above 5 ppb, with the highest value at 86 ppb.

Further work may need to include a ground magnetic survey and/or an Induced Polarization (IP) survey. A downhole pulse EM survey would also have been beneficial at the time of drilling as it may have detected potential off-hole conductors, and thus, should be incorporated into any future drilling program.

Respectfully submitted,

“S. Vatcher”

Spencer V. Vatcher, P.Geo.
Consulting Geologist
Silvertip Exploration Consultants Incorporated
November 15, 2013
Table 2 Exploration expenditures Licence 020356M

<table>
<thead>
<tr>
<th>Department</th>
<th>Total Expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond Drilling</td>
<td>$17,245.50</td>
</tr>
<tr>
<td>Core Logging (1.5 days)</td>
<td>$450</td>
</tr>
<tr>
<td>Assaying</td>
<td>$382.23</td>
</tr>
<tr>
<td>Report Writing</td>
<td>$500</td>
</tr>
<tr>
<td>Total:</td>
<td>$18,577.73</td>
</tr>
</tbody>
</table>
9.0 References

Baird, D.M.
1945: Geology and mineral deposits of the Ming’s Bight – Pacquet Harbour area.

Barbour, D.M. and French, V.A.

Bédard, J.H., Lauzière, K., Sangster, A., and Boisvert, É.

Bradley, P.

Bradley, P and Robertson, B

Calon, T.J. and Weick, J

Castonguay, S., Skulski, T., van Staal, C., Currie, M.

Christie, B.J. and Dearin, C.

Copeland, D.A.
Dean, P. L.

Dearin, C.

de Geoffrey, J.

Downton, D.

Dimmell, P.

Dimmell, P. and Hartley, C.

Dubé, B. Lauziere, K. and Paulsen, H.K.
Duncan, D.R. and Graves, R.M.

Evans, D.T.W.

Evans, D.T.W.

Ferguson, D.W.

Fitzpatrick, D.S.

Frew, A.M.

Goodwin, L.B. and Williams, P.F.

Government of Newfoundland and Labrador Department of Mines and Energy

Gower, D.

Gower, D., Graves, G., Walker, S. and MacInnis, D.

Graves, G.

Harland, W.B. and Gayer, R.A.

Hayes, J.P.

Hibbard, J.P.

Hibbard, J.P., St-Julien, P. and Trzcienski, W.E., Jr.

Hinchey, J.

Howse, A.F. and Collins, C.J.
Huard, A.A.

Jenner, G.A. and Fryer, B.J.

Jourdain, V. and Oravee, K.

Kidd, W.S.F.

Kidd, W.S.F., Dewey, J.F. and Bird, J.M.

Kirkwood, D. and Dubé, B.

Larcey, P.

Martin, W.
McBride, D.E.

Murray, A. and Howley, J.P.

Neale, E.R.W.

Norman, R.E.

O’Donnell, A.J.

Ovens, G.D. and McBride, D.E.

Patey, K.S.

Pickett, J.W.

Swinden, H.S.

Tuach, J.
1989: Summary report Goldenville Property, Bishop and Harvey Fee Simple Grant, Volume 1, Folio 99, Ming’s Bight area, Newfoundland. Unpublished report Harvey and Company Limited,

Tuach, J. and Collins, M.J.

Watson, K. de P.

Wells, S.

Williams, H.

Williams, H., Colman-Sadd, S.P. and Swinden, H.S.

Williams, H., Hibbard, J. and Bursnall, J.
Appendix 1
Diamond-Drill Logs
<table>
<thead>
<tr>
<th>Depths</th>
<th>Rock Type</th>
<th>Descriptions</th>
<th>Sample #</th>
<th>From</th>
<th>To</th>
<th>Width</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 10.1m</td>
<td>Overburden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1 to 11.3</td>
<td>Chlorite Schist</td>
<td>Moderate Fe-Carb altered to weakly Fe-Carb altered. Strongly deformed chlorite schist. Strong sericite alteration throughout, with epidote veins local to the lower contact. Contact is marked by a 18cm quartz+/-sericite vein at 11.3m at approx 45 degrees TCA.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3 to 27.0m</td>
<td>Mafic Tuff?</td>
<td>Strongly Fe-Carb altered becoming weakly altered locally where Chl metamorphism and clay alteration are strong. Clays are typically light green to yellowish green to white, locally orange-brown. Patchy black Chl altered zone at 18.5 to 18.7m. Strong to locally moderate deformation observed throughout. Fe-Carb dominantly oriented parallel to foliation, typically approx to 70 degrees TCA, locally chaotic quartz veins are local, typically broken up but with some well preserved late veins all appear barren. Soft sediment deformation in clay rich zones. Unit ends where a soft sediment deformation zone with clay contacts underlying unit at 27.0m at approx 75 degrees TCA.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.0 to 32.6m</td>
<td>Mafic Tuff</td>
<td>Moderate to strongly deformed at the top, becoming weakly deformed locally, strongly Fe-Carb altered to 31.2m where patchy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>Geologic Unit</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.6 to 34.8m</td>
<td>Mafic Volcanic</td>
<td>Very fine grained, undeformed to locally deformed near the base of the unit. Unaltered, only Chlorite metamorphism to greenschist grade. Clay alteration and deformation with broken quartz and Carbonate veining within last 10cm of zone. Contacts underlying unit at 34.8m at approx 75 degrees TCA at a slightly undulose contact. Local soft sediment deformation (slumping, micro faults), local clastic zone, clasts also chloritized.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.8 to 38.7</td>
<td>Mafic Volcanic</td>
<td>Moderate Fe-Carb alteration to 35.4m, chloritized, clay altered (mod-local weak or strong) with local quartz + Carb veins below. Trace, local very fine grained pyrite observed. Not appreciable enough to sample. Chl porphyroblasts(fine) and relict plag crystals(very fine grained) are common in weakly clay altered, relatively undeformed areas, jointed core below approx. 38m. Unit end where highly irregular barren quartz vein is observed, below which deformation/alteration becomes much stronger at 38.7m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.7 to 59.1m</td>
<td>Mafic Volcanic</td>
<td>Clay altered very fine grained to fine grained chloritized volcanics, strongly veined near the upper contact, only local barren quartz veins below. Fe-Carb alteration is locally mod-weak, first observed at 43.7m. Possible fault just above this at 43.2 to 43.7m, defined by blocky core. Deformation is dominantly moderate, locally strong with some boudinage/breaking of host/veins. Black Chl local to some lighter green clay altered sections. Local Chl porphyroblasts, local shearing (strong deformation zones). Unit is roughly consistent to the EOH at 59.1m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diamond Drill Log

<table>
<thead>
<tr>
<th>Depths</th>
<th>Rock Type</th>
<th>Descriptions</th>
<th>Sample #</th>
<th>From</th>
<th>To</th>
<th>Width</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7.5m</td>
<td>Overburden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5 to 18.45m</td>
<td>Chlorite Schist</td>
<td>Dominantly Fe-Carb altered. Moderately to strongly deformed with locally undeformed zones.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.75-23.63m</td>
<td>Shear Zone</td>
<td>Moderately sheared shear zone. Lower contact is marked by an undulose quartz/carb vein.</td>
<td>103373</td>
<td>23.60</td>
<td>24.00</td>
<td>0.40</td>
<td>7</td>
</tr>
<tr>
<td>23.63-24.1m</td>
<td>Chlorite Schist</td>
<td>Disseminated pyrite, strongly black chlorite altered, local sphalerite, weakly to moderately deformed, lower contact irregular.</td>
<td>103374</td>
<td>blank</td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>24.1 to 26.9m</td>
<td>Chlorite Schist</td>
<td>Iron carbonate, distinctly foliated, strongly deformed, synformation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.9 to 31.1m</td>
<td>Mafic Volcanic</td>
<td>Iron carbonate zones that appear to be post peak deformation alteration, highly irregular, strongly deformed, no foliation, 0.5mm scale crystals of iron carbonate and black chlorite, anhedral crystals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.1 to 34.4m</td>
<td>Mafic Volcanic</td>
<td>Strongly deformed post peak deformation alteration and crystals are cm scale with no discernable foliation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.4 to 45.65m</td>
<td>Mafic Volcanic</td>
<td>Below contact there is a 20cm clay/sericite altered zone and this appears throughout zone. Strongly deformed, weakly foliated. Lower contact is sheared locally.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.65 to</td>
<td>Mafic Volcanic</td>
<td>Weakly deformed for first 75cm. Overall unit is strongly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hole #: TE-12-8

- **Date Drilled:** May 24/2013
- **Planned:** 150m
- **Azimuth:** 0
- **Dip:** -90
- **Depth:** 148.4m

- **Drilled By:** Zenith Drilling
- **Test:**
- **Azimuth:**
- **Dip:**
- **Depth:**

- **Date Logged:** July 6-7, 2013
- **Test:**
- **Azimuth:**
- **Dip:**
- **Depth:**

- **Logged By:** M Parsons/J Hull
- **Test:**
- **Azimuth:**
- **Dip:**
- **Depth:**

UTM (NAD83):
0555091E/5530323N
Elevation: 34m
Grid Coordinates: NAD:
<table>
<thead>
<tr>
<th>Interval</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.3m</td>
<td>deformed. Chaotic iron carbonate alteration (chaotic arrangement of anhedral crystals).</td>
<td></td>
</tr>
<tr>
<td>51.3 to 57.1m</td>
<td>Felsic Tuff? Weakly foliated, weakly deformed. Fault at 50.0 to 51.1m. Lower contact, clay or carbonate altered.</td>
<td>103364 78.60 79.55 0.95 5</td>
</tr>
<tr>
<td>57.1 to 79.55m</td>
<td>Mafic Tuff? More chlorite rich than previous unit. Moderately deformed, weak to moderately altered, Carbonate alteration with weak carbonate altered areas locally. Small mineralized zone containing approx. 2% pyrite from 62.85 to 63.3 m. Lower contact is arbitrary.</td>
<td>103365 79.55 80.60 1.05 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103366 80.60 81.45 0.85 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103367 81.45 82.45 1.00 15</td>
</tr>
<tr>
<td>79.55 to 82.2m</td>
<td>Mafic Volcanic Black chlorite altered, high relief, fractured white mineral seen locally, chaotic crystal arrangement suggesting post peak deformation alteration. Pyrite crystals seen locally. Mineralized zone from 79.55 to 87.7m. Lower contact sheared approx. 60 degrees TCA.</td>
<td>103368 82.45 83.50 1.05 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103369 83.50 84.40 0.90 5</td>
</tr>
<tr>
<td>82.2 to 99.85m</td>
<td>Felsic Volcanic/Tuff? Unit becomes more felsic with quartz becoming more prominent. Weakly foliated, moderately deformed. Clay alteration common throughout. Lower contact is faulted at 60 degrees TCA.</td>
<td>103370 84.40 85.30 0.90 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103371 85.30 86.75 1.45 86</td>
</tr>
<tr>
<td>99.85 to 103.45m</td>
<td>Felsic Tuff Relatively unaltered felsic tuff with black chlorite veinlettes which are fracture controlled? Plag rich. Lower contact deformed at approx. 60 degrees TCA.</td>
<td>103372 86.75 87.70 0.95 5</td>
</tr>
<tr>
<td>103.45 to 106.4m</td>
<td>Mafic Tuff Alteration increases to weak/moderate. Chlorite begins to increase. Quartz and Plag. decrease/becomes more mafic. No discernable foliation. Lower contact is arbitrary.</td>
<td>103373</td>
</tr>
<tr>
<td>106.4 to 117.1m</td>
<td>Mafic Volcanic/Tuff? Black chlorite alteration. Weakly foliated with weak to moderate deformation. Post peak deformation alteration. Lower contact irregular, maybe faulted.</td>
<td>103374</td>
</tr>
<tr>
<td>117.1 to 129.6m</td>
<td>Mafic Tuff? Weakly foliated, very soft to scratch. Tuff? Alternating with iron carbonate post peak alteration. Small pyrite rich zones seen locally approx. 5cm in thickness. Lower contact sheared at approx. 60 degrees TCA.</td>
<td>103375</td>
</tr>
<tr>
<td>129.6 to 138.9m</td>
<td>Mafic Tuff Relatively undeformed tuff, very well silicified, hard to scratch. Not much iron carb relative to previous units. Becomes</td>
<td>103376</td>
</tr>
<tr>
<td>Depth</td>
<td>Rock Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>131.9m - 134.5m</td>
<td></td>
<td>Moderately deformed at 131.9m. Black chlorite alteration picks up at 134.5m but still moderately to weakly deformed. Lower contact sheared at approx. 70 degrees TCA.</td>
</tr>
<tr>
<td>138.9 to 148.4m</td>
<td>Mafic Volcanic/Tuff?</td>
<td>Moderately to intensely deformed. Weakly foliated if foliated at all. Chaotic crystal alignment - post peak deformation alteration? Black chlorite alteration throughout. Iron carbonate seen locally. Clay alteration seen locally. End of Hole</td>
</tr>
</tbody>
</table>
Appendix 2 Assay Certificate(s)

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Assay Date</th>
<th>Assay Description</th>
<th>Assay Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>2023-01-01</td>
<td>Gold</td>
<td>99.99%</td>
<td>ppm</td>
</tr>
<tr>
<td>56789</td>
<td>2023-02-02</td>
<td>Silver</td>
<td>99.95%</td>
<td>ppm</td>
</tr>
<tr>
<td>98765</td>
<td>2023-03-03</td>
<td>Copper</td>
<td>99.97%</td>
<td>ppm</td>
</tr>
<tr>
<td>45678</td>
<td>2023-04-04</td>
<td>Iron</td>
<td>99.99%</td>
<td>ppm</td>
</tr>
<tr>
<td>23456</td>
<td>2023-05-05</td>
<td>Zinc</td>
<td>99.98%</td>
<td>ppm</td>
</tr>
<tr>
<td>56789</td>
<td>2023-06-06</td>
<td>Nickel</td>
<td>99.96%</td>
<td>ppm</td>
</tr>
<tr>
<td>98765</td>
<td>2023-07-07</td>
<td>Lead</td>
<td>99.94%</td>
<td>ppm</td>
</tr>
<tr>
<td>45678</td>
<td>2023-08-08</td>
<td>Cadmium</td>
<td>99.92%</td>
<td>ppm</td>
</tr>
<tr>
<td>23456</td>
<td>2023-09-09</td>
<td>Mercury</td>
<td>99.88%</td>
<td>ppm</td>
</tr>
<tr>
<td>56789</td>
<td>2023-10-10</td>
<td>Arsenic</td>
<td>99.85%</td>
<td>ppm</td>
</tr>
<tr>
<td>98765</td>
<td>2023-11-11</td>
<td>Thallium</td>
<td>99.82%</td>
<td>ppm</td>
</tr>
<tr>
<td>45678</td>
<td>2023-12-12</td>
<td>Antimony</td>
<td>99.79%</td>
<td>ppm</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Au (ppb)</td>
<td>Co (ppm)</td>
<td>Br (ppm)</td>
<td>Ba (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Blank - Au</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td>--</td>
<td>10</td>
<td>10</td>
<td>0.01</td>
</tr>
<tr>
<td>Set LSKSD-2</td>
<td>--</td>
<td>121</td>
<td>100</td>
<td>2.75</td>
</tr>
<tr>
<td>103374</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>2.92</td>
</tr>
<tr>
<td>103364 Dup - C</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>2.87</td>
</tr>
<tr>
<td>103365</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>6.01</td>
</tr>
<tr>
<td>103366</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>7.07</td>
</tr>
<tr>
<td>103367</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7.02</td>
</tr>
<tr>
<td>103368</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5.92</td>
</tr>
<tr>
<td>103369</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>3.79</td>
</tr>
<tr>
<td>103370</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>5.68</td>
</tr>
<tr>
<td>103371</td>
<td>86</td>
<td>10</td>
<td>10</td>
<td>6.86</td>
</tr>
<tr>
<td>103372</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>5.81</td>
</tr>
<tr>
<td>103373</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>6.06</td>
</tr>
<tr>
<td>103374</td>
<td>41</td>
<td>10</td>
<td>10</td>
<td>5.33</td>
</tr>
<tr>
<td>103374 Dup - P</td>
<td>19</td>
<td>10</td>
<td>10</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: Concentrations in assay range may cause interferences in associated elements.