<table>
<thead>
<tr>
<th>Licence/Property</th>
<th>No. of Claims</th>
<th>Assessment Year</th>
<th>Date Issued</th>
<th>NTS Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>20373M</td>
<td>4</td>
<td>1</td>
<td>2012-07-23</td>
<td>2E/07</td>
</tr>
</tbody>
</table>

Continued next page [No] Yes [Yes]

Number of Volumes: __________ 1

Digital Copy Only [No]

Enclosures (indicate number of each):
- CD: __________
- DVD: __________
- Flash drive: __________
- Paper Maps: __________
- Other: __________

Received: 2012-10-18

Comments: __________________________

Signed: __________________________

Date: 2012-11-21
First Year Assessment Report

Prospecting and Geochemical Investigations

License 020373M

Situated within NTS 2E/7

First Pond Central Newfoundland

Received

\[\text{Oct 18 2012}\]

Mineral Claims
Recorder's Office
First Year Assessment Report

Prospecting and Geochemical Investigations

License 020373M

Situated within NTS 2E/7

First Pond Central Newfoundland
1:0 Introduction

License 020373M was staked early summer in 2012, as a result of the discovery of a gold showing now called The Big Aspen. In the spring of 2012 two rock samples collected from outcrop within this license were assayed with results of 3.1g/t and 4g/t Au. One other sample collected from the southwest corner of the property also returned anomalous gold values.

License 020373M consist of four claims all situated within NTS map sheet 2E/07. With the close proximity to a large number of gold showings from Gander Bay to Glenwood this area as the possibility to hold some potential.

This report summaries the geochemical exploration carried out in 2012.

2: 0 Location and Access

The property is located in north-central Newfoundland and approximately 50 km north of Gander. The property lies at the southern end of First Pond and .5 km north of Second Pond, two elongated north to northeast trending lakes. Access to the property from Gander, is west to route 340(Road to the Isles) which leads to the Community of Birchy Bay, where the Celics Resource Road leads to and bisects the property. The semi-maintained wood roads, it branches and skidder trails, provide excellent access to all sectors of the property.

Within the property outcrop is fair, restricted to the north –northeast trending ridges that reflect the regional structural control. Elevation within the property is generally between 100 to 200 metres above sea level. The higher elevation is made up of ridges of the more resistant sandstone and gabbroic rocks. The lower elevations usually overlain with bogs and alder beds appear to be underlain with shale. Drainage in the property is to the north –northeast. Much of the area including the ground covered by licence 020373M has been commercial logged. Within the property vegetation consist of naturally occurring regeneration on the cutovers. In the unlogged areas vegetation ranges from bog to a mix of alders and birch beds, to stunted spruce and fir.
Previous Work

The earliest geological work recorded of the region was from the late 1800’s when A. Murray and J. Howley visited and explored the region (Murray and Howley, 1881). Since then the area has been included in a number of geological mapping surveys carried out by various government agencies. Included in those surveys was the mapping by H. William’s in 1960’s and Blackwood in the 1970’s. William’s mapped the area for the Geological Survey of Canada (William’s 1964). Blackwood mapped the 2E map sheets at a 1:50,000 scale for the Newfoundland Department of Mines and Energy (Blackwood. 1982). This survey was part of the Canada-Newfoundland Regional Mineral Potential Evaluation.

A geological survey of the Notre Dame Bay area was undertaken by Kranck (1952). Part of the study focused on the geology in the vicinity of Loon Bay, Kranck (1952) noted, six different units, comprising the stratigraphy of this area as well as the strong deformation present. Patrick (1956) examined the geology in the Comfort Cove map area NTS 2E/7 and assigned rocks in the Duder Lake area to the Springdale Group. He defined two sedimentary units in the vicinity of Duder Lake. The westernmost unit was described as red, brown, grey, and green quartzite and quartzitic sandstones. The unit to the east was described as red, brown, grey, green slates, argillites and shale’s. In addition, small gabbroic dykes and sills of Devonian age were recorded outcropping along the southeast shore of Duder Lake. Williams (1964) undertook a study to compile the geology, complete initial geological mapping, and to investigate the mineral deposits in northeast Newfoundland. In the Duder Lake area, he identified two different units: a Silurian aged unit comprised of red and grey micaeous sandstone and siltstone, conglomerate, shale, coralline shale, and limestone; and an Ordovician aged unit comprised of grey to black slate and siltstone, greywacke and minor volcanic rocks. The Silurian aged unit was mapped as part of the Botwood Group whereas the Silurian aged unit was determined to be part of the Gander Group.

Since 1980, the eastern Dunnage Zone has become the focus of extensive gold exploration after the discovery of quartz vein hosted gold mineralization in the Jonathan’s Pond area (Blackwood, 1982). The Newfoundland Department of Mines and Energy, in 1988, released the results of a regional lake sediment geochemical survey, which yielded anomalous Au, Sb and As over a wide area in the eastern Dunnage Zone (NTS 2E, Davenport and Nolan, 1988). The highest concentrations of As and Sb were located at the Duder Lake, Rocky Pond, and Ten Mile Lake. This prompted exploration companies, such as Noranda Exploration Company Limited, to stake ground in the immediate area since the Au-As-Sb association usually accompanies Au mineralization.

As a result of prospecting and soil geochemical surveys, several significant gold discoveries were made in rocks of the Davidsville and Botwood groups (Green, (1989); Tallman, (1990))
In 1953, T.O.H. Patrick of the GSC reported a large quartz vein in the vicinity of Charles Cove, Gander Bay Newfoundland (Patrick, 1953). He states the quartz vein to contain visible scheelite at one locality and fluorescent mineralization at two others. Patrick’s examination was of a reconnaissance nature only. Nalco geologists reconnoitered the area in 1953. In the spring of 1954 they excavated five trenches across the vein and stripped several hundred feet of moss. Other portions of the mineralized vein were subject to a nighttime survey with a fluorescent light. As a result of this work fluorescent material was observed at two other places (O'Toole, 1967). In the spring of 1970, Norlex Mines Limited optioned the property and devoted several months to a field study of the property (O’Toole, 1970). In July of 1988, the mineral rights to this occurrence were acquired by Noranda Exploration company Ltd. Noranda personnel prospected the area and discovered anomalous gold associated with arsenopyrite. Noranda Exploration Company Ltd prospectors discovered gold mineralization in four localities on the Duder Lake peninsula in 1989 (Green, 1989). These occurrences include the Goldstash, Corvette, and Stinger prospects and the Flirt showing. In 1989, the company conducted soil, silt and till geochemical surveys, magnetic and VLF-EM surveys and excavated 9 trenches in the Duder Lake area (Green, 1989). Twelve diamond drill holes were drilled on the gold occurrences in 1989-1990 (Tallman, 1990, 1991). This drilling included one hole in the Stinger prospect.

In 2003 the Titan was also trenched by Rubicon Minerals, results from trenching were 15.25g/t over 3m, 48.2g/t over 0.8m, 9.4g/t over 4.25m in channel samples. Panel samples were taken and the results are as follows: 23.5g/t in 0.3m x 0.3m, 12.37g/t in 0.5m x 0.6m, 12.03g/t in 0.45m x 0.4m. Crosshair Exploration drilled 10 diamond drill holes in the Titan prospect in the Fall of 2003, significant gold mineralization was intersected; the best results are 10.22g/t over 3.35m in sediments, 3.65g/t over 2.32m, and 4.45g/t over 2.5m, most mineralization and visible gold was seen in gabbros in the drill core, channel samples, panel samples and chip sample. The best intersection in the drill program was intersected in the sediments and contained visible gold.
4:0 Geology

Newfoundland Geology

The island of Newfoundland lies at the north-eastern edge of the Appalachian Orogen. Newfoundland is divided into three major tectonic-stratigraphic subdivisions: the Humber Zone, Central Mobile Belt and the Avalon Zone (Williams, 1978). The Humber Zone, underlying the north-western part of the island is separated from the south-eastern Avalon Zone by the Central Mobile Belt. The Humber Zone, with it’s Precambrian crystalline basement of late Grenvillian gneisses and plutonic rocks is overlain with Palaeozoic (Eocambrian to Ordovician) shelf facies clastic and carbonate rock sequences (Ermer, P. 1986).

The Avalon Zone consists of a Precambrian basement of late Hadrynian metavolcanic, meta-sedimentary and plutonic rock overlain by early Palaeozoic (Eocambrian to Ordovician) shallow marine sedimentary strata (Williams, H. 1972).

The Central Mobile Belt records the formation, development and later destruction of the early Paleozoic ocean Impetus (Harland and Gayer, 1972). The Central Mobile belt is divided into the Dunnage Zone and the Gander Zone and consists of island/back-arc volcanic, sedimentary, amphibolites and plutonic rocks ranging in age from early Ordovician to Jurassic. The pre-Silurian rocks of this zone record the intra-oceanic events of island arc and back arc basins. Two geological sub zones, the Notre Dame and Exploits make up this zone. They are separated by a large terrain boundary, (The Red Indian Line) with the Notre Dame sub zone to the west and the Exploits to the east. The Exploits sub zone represents remnants of the southeast flank of the Iapetus Ocean and is in contact and in part overlies the continentally derived sedimentary rocks of the Gander Zone. The sedimentary rocks of the Gander Zone are said to have been deposited at or near the eastern continental margin of the Iapetus Ocean (Colman - Sadd, 1980).

Regional Geology

The northeast portion of central Newfoundland, geologically, is divided into three major subdivisions: the Gander River Complex, The Davidsville Group and the Botwood Group.

The Gander River Complex, though undated, is considered to be Late Cambrian or Early Ordovician (Blackwood, 1982). The Gander River Complex forms a discontinuous amphibolites belt comprised of pyroxenite, serpentinite, magnetite, gabbro, talc-tremolite, mafic flows, volcanioclastics, trondjemite, and quartz feldspar porphyry.
The Botwood Group is a thick terrestrial to shallow marine sedimentary and volcanic sequence, conformably overlying the Davidsville Group. The Botwood Group is comprised of sub aerial mafic to felsic volcanics and volcanoclastics, overlain with grey to red (locally micaceous and tuffaceous) sandstone conglomerate, and siltstone (Currie, 1993). The Ordovician Davidsville Group (cf. Kennedy and McGonigal, 1972) is a thick sequence of distal back-arc turbidites, which were fed from older island-arc systems to the west, and were deposited on the allochthonous oceanic basement delineated by the rocks of the Gander River Ultra basic Belt (Blackwood, 1982). This distinct belt of northeast-trending ultramafic rocks have been formally termed The Gander River Complex by O’Neill (1991). The Group consists of dark-grey, green, and black slate with minor siltstone and fine-grained sandstone, shale, greywacke and argillaceous siltstone. Thinly interbedded and exhibiting strong penetrative cleavage.

Local Geology

The property is underlain by a monotonous sequence of black shale, siltstone and greywacke. The shales exhibit an intensely developed north-northeast trending, steeply east-dipping, slaty cleavage. Graded bedding in the greywacke units indicates that the rocks are overturned to the northwest. These sedimentary rocks were mapped by Patrick (1956) and were included in the Silurian Indian Islands Group by Baird (1958). However, based on the presence of intercalated, fine grained, grey green pillow lava along strike to the northeast and lithological similarity with the Davidsville Group, suggest that the belt of sedimentary rocks, which extend northward from Second Pond along the west side of Dog Bay, may be Ordovician.

The sedimentary rocks are intruded by numerous fine to medium grained gabbro dykes and sills(?). The gabbro bodies are approximately 2 to 20 m thick and have a strike length of up to 400m. The gabbros appear to have been intruded during early regional deformation. Crosscutting relationships between the gabbros and the sedimentary rocks are locally preserved. Green (1989b) indicated that the tight isoclinal folding with an associated axial planar slaty cleavage may be the dominant structural style within the area. These folds are interpreted to be steeply inclined and verge toward the northwest. The effect of regional deformation on the gabbro bodies was inhomogeneous. In the less deformed gabbro bodies, conjugate joint patterns resulted. In other areas, where deformation was concentrated, shear fracture sets (low- and high angle Riedel shears and central shears) formed. These shears played a significant role in the localization of quartz veining and alteration with the most intense alteration appearing to have been developed along the high angle Riedel shears (R’). Green (1989b) reported that these mineralized shears strike 45 degrees, dip moderately to the northwest and crosscut the regional penetrative fabric at an angle of 20 to 30 degrees. The zones are typically narrow, ranging from 2 to 10m, and have a relatively limited strike potential that is governed by the width of the gabbro.
The shears exhibit sinistral offset and pinch out quickly within the adjacent shales. However, these shears are repeated regularly along the strike length of the gabbro forming panels of shearing and alteration which dip variably to the northeast. The economic potential of this style of mineralization is actually controlled by the strike length of the gabbro. Veining and alteration also locally mimicked the conjugate jointing which produced a blocky alteration pattern with remnant blocks of relatively unaltered gabbro being preserved. Extension fracture veins (tension gash) occur in the less deformed gabbro adjacent to the shears.
5:0 Exploration 2012

In 2012 a total of 5 man days were spend prospecting License 020373M, nine samples were collected. With the construction of new resource roads in the area exposure of the outcrop is excellent. From one of these outcrops two samples were collected (gabbro cut by small 2-5cm quartz veins) returned highly anomalous values of 3 and 4 g/t Au.

One other sample collected in the southwest of the property also returned an anomalous value in Au. with 211ppb. With the ongoing logging and road construction in the immediate area the discovery of new gold showings are good.
6:0 References

Green, K., 1989: First Year assessment report on geological and diamond drilling exploration for the Noranda/Noront North GRUB Line project including the Duder Lake area, Newfoundland, c.150 p.

Page 7
Fig. 1 Location Map License 020373M
Fig. 2 Sample Location Map
License 020373M

Newfoundland and Labrador
Department of Natural Resources
Mineral Lands Division
P.O. Box 8700, St. John's, NL, A1B 4J8

License Information
License: 020373M
Holder: Quinlan, Mervin
Location: First Pond, Central NL
Map Sheets: 02E07

Signing Authority
Date: Monday, July 23, 2012
Fig. 3 Newfoundland Geology

Tectonostratigraphic Zonations

Humber Zone
- Precambrian crystalline, Laurentian basement overlain by younger shelf-facies rocks and alluvial fan sedimentary rocks.

Dunngage Zone
- Notre Dame Subzone: dominantly Cambrian to Middle Ordovician submarine volcanic rocks and epeiric shelf sequences unconformably overlying non-marine Silurian overlying post-glacial volcanics.
- Exploits Subzone: dominantly Cambrian to Middle Ordovician oceanic sediments overlain by interbedded volcanic rocks, overlying pre-Lower Ordovician shelf sequences that pass conformably into fluvial deposits that in turn pass into shallow marine and non-marine Silurian strata.

Gander Zone
- Cambro-Ordovician, variably metamorphosed, quartz-rich siliciclastic rocks of continental slope origin (Gander Lake Subzone) and inferred structural windows through the Dunngage Zone (Mount Cormack and Meelpaq Subzones).

Avalon Zone
- Late Proterozoic submarine and terrestrial volcanic rocks and turbidite, deltaic and fluvial sedimentary rocks conformably overlain by a younger shallow marine succession having distinctive Avalon-Atlantic faunal assemblages.

Major Geological Elements
- Rocks of ophiolitic affinity may include mafic intrusive and extrusive rocks as well as ultra-mafic lithologies.
- Post-Ordovician intrusive rocks including felsic and mafic intrusive lithologies.
- Post-Ordovician overlap sequences including shallow marine and non-marine sedimentary and volcanic rocks.
- Regional scale faults and shear zones that delineate boundaries between adjacent tectonostratigraphic zones.
FIGURE 3: SIMPLIFIED GEOLOGY OF NEWFOUNDLAND
Appendix I

Statement of Expenditures License 020373M

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospecting 5 man days</td>
<td>$800.00</td>
</tr>
<tr>
<td>Analytical cost plus shipping and transport</td>
<td>$300.00</td>
</tr>
<tr>
<td>Meals @$20.00 per day 5 days</td>
<td>$100.00</td>
</tr>
<tr>
<td>Transportation truck @ $60.00</td>
<td>$300.00</td>
</tr>
<tr>
<td>ATV @$40.00</td>
<td>$200.00</td>
</tr>
<tr>
<td>Report writing</td>
<td>$100.00</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>$1800.00</td>
</tr>
<tr>
<td>Administration 15%</td>
<td>$270.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$2070.00</td>
</tr>
</tbody>
</table>

Excess expenditures to be applied to consecutive years.

Personnel

Mervin Quinlan @$100.00 per day (3 days)

Roland Quinlan @$250.00 per day (2 days)

Respectfully,

Mervin Quinlan, Oct 2012
Appendix II
Analytical Certificate
License 020373M

Client: Merlin Civitan

Geologic:

Project: Rock

Sample:

Date/Time: 6/20/2012

Date: June 11, 2012

Date Out: June 20, 2012

Au Fire Assay/ICP Geochemistry Certificate

Eastern Analytical Limited

P.O. Box 1015

Little Bay Road

Springdale, NL

A0A 1P0

Phone: 709-673-3009

Fax: 709-673-3400

Email: easternanal@gmail.com

(Certifications in assay range may cause interference in associated elements.)

Sample Number

<table>
<thead>
<tr>
<th>Au</th>
<th>Co</th>
<th>Sr</th>
<th>Ba</th>
<th>Fe</th>
<th>P</th>
<th>Na</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Zn</th>
<th>Cu</th>
<th>Pb</th>
<th>Ni</th>
<th>W</th>
<th>La</th>
<th>K</th>
<th>Mn</th>
<th>Fe</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
<td></td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
</tr>
</tbody>
</table>

1206
1209
1210
1210 Dep - C
1211
1212
1213
1214

1 of 1
APPENDIX III

SAMPLE DESCRIPTIONS License 020373M

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>type</th>
<th>description</th>
<th>easting</th>
<th>northing</th>
<th>Au.ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1206</td>
<td>outcrop</td>
<td>silicified sediment with py. and arsenopyrite</td>
<td>71011</td>
<td>74009</td>
<td>5</td>
</tr>
<tr>
<td>1207</td>
<td>float</td>
<td>Gabbro partially silicified 1-2%py</td>
<td>71195</td>
<td>74012</td>
<td>5</td>
</tr>
<tr>
<td>1208</td>
<td>float</td>
<td>Fine grain sediments 3-4%py</td>
<td>71196</td>
<td>74014</td>
<td>211</td>
</tr>
<tr>
<td>1209</td>
<td>outcrop</td>
<td>greywacke,quartz,py and arsenopyrite</td>
<td>71501</td>
<td>74088</td>
<td>5</td>
</tr>
<tr>
<td>1210</td>
<td>outcrop</td>
<td>Grey/green fn. Gn. With black chl. 2%py</td>
<td>71007</td>
<td>74098</td>
<td>5</td>
</tr>
<tr>
<td>1211</td>
<td>outcrop</td>
<td>carbonated q silicified greywacke arsenopyrite</td>
<td>71900</td>
<td>74503</td>
<td>5</td>
</tr>
<tr>
<td>1212</td>
<td>outcrop</td>
<td>Rusty gabbro small qv cubic py, arsenopyrite</td>
<td>71311</td>
<td>74601</td>
<td>3177</td>
</tr>
<tr>
<td>1213</td>
<td>outcrop</td>
<td>Same as sample 1212</td>
<td>71312</td>
<td>74604</td>
<td>4088</td>
</tr>
<tr>
<td>1214</td>
<td>outcrop</td>
<td>fine grained siltstone with pyrite</td>
<td>74806</td>
<td>71219</td>
<td>5</td>
</tr>
</tbody>
</table>