<table>
<thead>
<tr>
<th>Licence/Property</th>
<th>No. of Claims</th>
<th>Assessment Year</th>
<th>Date Issued</th>
<th>NTS Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>888311</td>
<td>166</td>
<td>6</td>
<td>2002-07-02</td>
<td>129/16</td>
</tr>
<tr>
<td>1238011</td>
<td>179</td>
<td>4</td>
<td>2004-07-05</td>
<td>n</td>
</tr>
</tbody>
</table>

Number of Volumes: 1

Enclosures (indicate number of each):

CD-Roms: 1 Diskettes:
DVD's:
Tapes:
Transparencies:
Paper Maps:
Microfiche:
Other:

Received: 2009-07-28
Comments: Interpretation to follow. Costs for interpretation not obtained in this report. This is acceptable.

Signed: Andrea Mill
Date: 2009/12/03
Assessment Report

Borehole Pulse EM Survey on Licences 8883M (6th Year) and 12380M (4th Year)

Victoria Lake Project

Central Newfoundland
(NTS 12A/6)

For

Crosshair Exploration & Mining Corporation,
Paragon Minerals Corporation,
And Kevin Keats (Property Vendor)

Total Claims: 305

Total Expenditures 8883M: $53,585.31
Total Expenditures 12380M: $79,731.09

By

Jeffery A. Morgan, P.Geo. – Senior Geologist / Lands Manager

Crosshair Exploration & Mining Corporation
Suite 202, 66 Kenmount Road
St. John’s, NL A1B 3V7

July 24, 2008
Assessment Report

Borehole Pulse EM Survey on Licences 8883M (6th Year) and 12380M (4th Year)

Victoria Lake Project

Central Newfoundland
(NTS 12A/6)

For

Crosshair Exploration & Mining Corporation,
Paragon Minerals Corporation,
And Kevin Keats (Property Vendor)

Total Claims: 305

Total Expenditures 8883M: $53,585.31
Total Expenditures 12380M: $79,731.09

By

Jeffery A. Morgan, P.Geo. – Senior Geologist / Lands Manager

Crosshair Exploration & Mining Corporation
Suite 202, 66 Kenmount Road
St. John’s, NL A1B 3V7

July 24, 2008
Table of Contents

1.0 Introduction ... Page 1
2.0 Location and Access ... Page 2
3.0 Claim Status .. Page 2
4.0 Regional Geology .. Page 5
5.0 Property Geology .. Page 5
6.0 Previous Exploration .. Page 8
7.0 Borehole Pulse EM Survey ... Page 9
8.0 Conclusions and Recommendations Page 10
9.1 Expenditure Summary: Licence 8883M Page 11
9.2 Expenditure Summary: Licence 12380M Page 11
10.0 List of References .. Page 12
11.0 List of Personnel and Contractors Page 14
12.0 Statement of Qualifications ... Page 15

Appendix I – Borehole Pulse EM Survey,
Logistical Report (Eastern Geophysics Limited)

List of Tables

| Table 1: Victoria Lake Property - Claim Status | Page 2 |
| Table 2: Drill Holes Surveyed with Borehole Pulse EM | Page 5 |

List of Figures

Figure 1 – Property Location Map	Page 3
Figure 2 – Claims Location and Access Map	Page 4
Figure 3 – Regional Geology and Mineral Deposits Map	Page 6
Figure 4 – Property Geology and Borehole Location Map	Page 7
1.0 Introduction

The Victoria Lake Property is located in west central Newfoundland on NTS map sheet 12A/06. The property consists of 305 claims in two mineral licences covering 7,625 ha (76.25 km2), currently under option to Crosshair Exploration & Mining Corporation from Paragon Minerals Corporation (“Paragon”). The claims were originally staked by prospector Kevin Keats.

The property is situated geologically within the Victoria Lake Supergroup of central Newfoundland, which hosts several significant volcanogenic massive sulphide (VMS) deposits including the Duck Pond and Boundary deposits. The property lies 6 kilometres southeast of the high-grade Boomerang Prospect which was discovered by Messina Minerals in December 2004.

In 2005 Crosshair carried out a compilation of previous work as well as an orthophoto survey on the property, done by Eagle Mapping in conjunction with a survey for Messina Minerals. Crosshair also carried out a lithogeochemical sampling program in order to prioritize areas for a follow-up gravity survey and eventual diamond drilling. Details of this work were included in the 2005 assessment report filed for licences 8883M and 11061M.

From July to August of 2005, Ionex Limited of Springdale, NL completed 54.15 kilometres of linecutting & grid refurbishing work and collected 234 soil samples on the Victoria Lake claims. Several of the soil samples returned anomalous base metal and silver values, while limited rock sampling returned assay values up to 321 ppb Au, 1.9 ppm Ag, and 153 ppm As. Previous work on the property identified sulphide rich boulders assaying up to 6.5% Zn, 4.1% Pb, 0.37% Cu, 33.9 g/t Ag, and 1.02 g/t Au.

Eastern Geophysics Limited performed a gravity survey on portions of the property during August and September, 2005. VOX Geoscience Ltd. Of Delta, BC independently interpreted and evaluated the gravity data. The survey covered four separate areas of the property and helped prioritize drill targets for subsequent drilling carried out in late 2006.

From September to October 2006, a Phase 1 diamond drilling program consisting of 2,197 metres in 11 holes was carried out on the Victoria Lake Property. Several of the holes intersected broad zones of VMS style (sericite-silica-chlorite) alteration along with variable stringer and semi-massive sulphide mineralization hosted within felsic volcanic and sedimentary rocks. Hole HW-06-01 returned 1.31% Zn over a 1-metre interval within a broad zone of favourably altered felsic volcanic rocks, while hole SG-06-04 returned four separate 50cm intervals that assayed between 0.52% Zn and 1.29% Zn.

A borehole Pulse EM survey was carried out from January to February 2008 in order to help direct the planned Phase 2 drilling program on the Victoria Lake Property. The survey was carried out by Eastern Geophysics Limited under the supervision of David Copeland, Exploration Manager with Paragon Minerals, at a total cost of $133,316.40 (not including HST). Helicopter support was provided by Universal Helicopters Newfoundland Limited out of Pasadena, NL. Data interpretation, to be provided by Crone Geophysics Ltd., is still pending and will be submitted once it is received.
2.0 Location and Access

The Victoria Lake Property is located in west central Newfoundland (Figure 1) approximately 125 kilometres south-southwest of Grand Falls-Windsor and 65 kilometres southwest of the town of Buchans. The property lies on NTS map sheet 12A/06 and is centred approximately on UTM co-ordinate 472,000E / 5,356,000N (NAD 27).

From the town of Badger, Route 370 leads southwest from the Trans Canada Highway to a series of logging and bush roads that can be used to reach the north side of Victoria Lake. From there a boat can be used for access to the property. Alternatively, a helicopter can be used for direct access from major towns in the area.

3.0 Claim Status

The Victoria Lake property comprises 305 map-staked claims in two licences (Table 1, Figure 2) that are subject to an option agreement between Crosshair Exploration & Mining Corporation (“Crosshair”) and Paragon Minerals Corporation (“Paragon”). The claims were originally optioned from prospector Kevin Keats by Rubicon Minerals Corporation (“Rubicon”), whose interest in the property has since been transferred to Paragon Minerals Corporation, a spin-out company set up through a “Plan of Arrangement” whereby Paragon now controls and operates Rubicon’s former Newfoundland and Labrador assets.

The original “Victoria Lake Property Agreement” signed with Rubicon in 2003 included 920 claims that make up a portion of the current Victoria Lake and South Golden Promise Properties in central Newfoundland. The agreement was amended to include the additional claims that make up the current Victoria Lake Property. Under the terms of the amended agreement, Crosshair can earn a 60% interest in the Properties by carrying out $1,750,000 in exploration and issuing 400,000 shares to Paragon over a 4-year period.

As of March 31, 2008 Crosshair had spent approximately $1,748,000 in eligible exploration and issued 400,000 common shares to Paragon, while maintaining the underlying agreement with the property vendors. In June 2008, Crosshair announced plans to form a new spin-out company (Gemini Metals Corp.) to explore its Newfoundland based gold and base metals properties, including the Victoria Lake Property.

Table 1: Victoria Lake Property - Claim Status

<table>
<thead>
<tr>
<th>Licence</th>
<th>No. Claims</th>
<th>Hectares</th>
<th>Issuance Date</th>
<th>Licence Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td>8883M</td>
<td>166</td>
<td>4150</td>
<td>July 2, 2002</td>
<td>Crosshair Exploration & Mining</td>
</tr>
<tr>
<td>12380M</td>
<td>139</td>
<td>3475</td>
<td>July 5, 2004</td>
<td>Crosshair Exploration & Mining</td>
</tr>
</tbody>
</table>
Figure 1: Property Location Map, Victoria Lake Project
Figure 2: Claims Location and Access Map, Victoria Lake Project.
4.0 Regional Geology

As shown in Figure 3, the Victoria Lake property lies within the Dunnage tectonostratigraphic zone (Williams, 1979), which preserves Cambrian to Middle Ordovician rocks of ophiolitic, island-arc and back-arc affinity (Swinden, 1990). The Dunnage Zone was affected by Silurian and Devonian orogenesis that produced thrusting, widespread crustal thickening, regional greenschist- and amphibolite grade metamorphism and plutonism (Dunning et al., 1990).

The Dunnage Zone is divided by an extensive fault system (referred to as the Red Indian Line) into the Notre Dame and Exploits subzones (Williams et al., 1988). Licence 8883M is located near the juxtaposition of the Notre Dame Bay and Exploits subzones as well as potential Avalonian elements expressed by the presence of Precambrian plutonic rocks, namely the Valentine Lake intrusive suite (Evans et al., 1990).

5.0 Property Geology

As illustrated in Figure 4, the Victoria Lake property is predominantly underlain by submarine volcanic rocks of the Victoria Lake Supergroup (Evans and Kean, 2002), which hosts several significant volcanogenic massive sulphide deposits including the Duck Pond and Boundary deposits. The property lies 6 kilometres southeast of the high-grade (zinc-rich massive sulphide) Boomerang Prospect, discovered by Messina Minerals in December 2004.

The rocks underlying most of the property were originally mapped as part of the Tulks Hill volcanics (Kean and Jayasinghe, 1980), but workers have subsequently recognized these rocks as belonging to a separate belt of rocks called the Long Lake Belt (Graves and Squires, 1992; McKenzie et al., 1993; Evans and Kean, 2002).

The Long Lake Belt comprises intercalated volcanic, volcaniclastic and sedimentary rocks that outcrop over a length of 70 kilometres in the vicinity of the Victoria Lake property. The northwestern margin of the Long Lake Belt is defined by a linear fault (interpreted from regional aeromagnetic maps) that marks the boundary between it and the Tulks Hill volcanics. The southeastern margin of the Long Lake Belt is marked by a regionally extensive unit of carbonaceous black shale and argillite that separates it from the Tally Pond volcanics, which underlie the southeast portion of the claims. Regional geochemical and stratigraphic correlations indicate that the rocks of the Long Lake Belt young to the southeast (Evans and Kean, 2002). Exposed on the eastern shore of Henry Waters on the Victoria Lake property is a sequence of altered and flattened porphyritic pillow lava referred to as the Henry Waters basalts, which are thought to represent the upper part of the Victoria Lake group (Evans and Kean, 2002).

Several major northeast structures occur in the Victoria Lake area and have affected all rock units through extensive shearing and faulting. The northeastern portion of the property is underlain mainly by volcanic and volcaniclastic rocks with a strong penetrative foliation resulting in the development of chloritic and sericitic schists. The southwestern portion of the property is underlain by a mix of volcaniclastics as well as strongly deformed shale and chert known as the “Caradocian Shale”. Felsic to intermediate intrusive rocks have been noted by
Figure 3: Regional Geology and Mineral Deposits Map (after Squires et. al, 2004).
Figure 4: Property Geology and Borehole Location Map, Victoria Lake Program.
Noranda and may be similar to or related to the quartz monzonite suite at Valentine Lake immediately east of the property (Kean, 1977).

6.0 Previous Exploration

In 1933, a prospecting party was sent out by the Buchans Mining Company to explore parts of an A.N.D.Co. Charter lease. The party reported several new showings including a gold showing on an island in the “Big Arm” of Victoria Lake (also referred to as Henry Waters). Results include 0.8 oz/ton Au, 4.5 oz/ton Ag, nil Cu, 1.7% Pb, 0.2% Zn, 7.0% Fe. The Big Arm showing was never followed up and subsequently became covered by water as a result of the damming of the lake for hydroelectric power.

In 1993, Noranda purchased the mineral rights to the Terra Nova Properties from BP Canada and initiated an aggressive exploration program that resulted in a number of significant base-metal discoveries in the region including significant base metal mineralization at Long Lake immediately northeast of the property. reconnaissance rock sampling was carried out in 1994 over the north-eastern half of the Licence but none of the samples were analyzed for gold.

Altius Minerals Corporation performed research and compilation for the 12A/06 map sheet and decided to evaluate the Big Arm showing which was discovered in 1933 (Dalton et al., 1999). A program of detailed grid-based bathymetry, and GPS surveying along with Mag/VLF surveys were conducted over the suspected area from the frozen lake surface. Results of the bathymetric soundings indicate that the island hosting the Big Arm showing lie underneath approximately 30 meters of water, and that the lake has risen about 33-34 meters as a result of the flooding at the time of the survey. The VLF survey indicated subtle conductors running parallel to the line direction, however the data was suspected to be “smoothed” somewhat by the effects of the lake, and that the grid lines were approximately parallel to the signal direction. The magnetics data indicated subtle domes and basins. Dalton et al. (1999) interpreted the data to represent a magnetic low over the location of the former island, flanked by a higher magnetic signature suggestive of a mafic intrusive body. They interpreted the magnetic low and resistive anomaly to represent quartz veining (and silicification?) associated with the Big Arm gold showing.

In 2003, Rubicon Minerals Corporation conducted reconnaissance prospecting and geochemical surveys over most of the licence and the results include a new gold discovery at Wigwam Brook in the southwestern corner of the licence. At Wigwam Brook, gold values of up to 3.5 g/t Au were returned from arsenopyrite bearing quartz carbonate vein measuring up to 30 cm in width. Significant results from the geochemical work include gold being panned in several locations throughout the property, including panned HMC samples that returned values up to 178 g/t Au from the central portion of the licence. In addition, gold panning conducted at the mouth of a small stream draining the area northeast of Wigwam Brook returned several fine flakes of gold in the beach material and the stream-bank till. A composite sample from both HMC’s gave a result of 12,000 ppb Au (Sparkes 2003).

In 2005 a detailed compilation of all previously documented work on the Victoria Lake property was completed for Crosshair by Spatial Data Management. An orthophoto survey was done on the property by Eagle Mapping in conjunction with an orthophoto survey that they performed on
nearby claims held by Messina Minerals. A field program including helicopter-supported lithogeochemical sampling plus ground checking of old Noranda grids for future re-gridding and brushing out in advance of gravity surveying was also undertaken. This work was documented in an assessment report filed in 2005 for licences 8883M and 11061M.

From September to October 2006, Crosshair and Paragon completed a Phase 1 diamond drilling program on the Victoria Lake Property consisting of 2,197 metres in 11 holes. The program was operated and supervised by Paragon personnel. The drill program tested several targets that were prioritized based on a combination of gravimetric geophysical signatures, soil geochemistry, and favourable geology and alteration based on previous mapping. Several of the holes intersected broad zones of typical VMS style (sericite-silica-chlorite) alteration along with variable stringer and semi-massive sulphide mineralization within felsic volcanic and sedimentary rocks, particularly on the Long Lake grid area.

7.0 Borehole Pulse EM Survey

From January to February 2008, Crosshair completed a borehole Pulse EM survey on the Victoria Lake Property. The borehole survey was conducted by Eastern Geophysics Limited of East Pubnico, Nova Scotia under the supervision of David Copeland, Exploration Manager for Paragon Minerals Corporation. Eastern Geophysics’ logistical report is included as Appendix 1. Access to the property was by helicopter from the community of Pasadena, with helicopter services provided by Universal Helicopters Newfoundland Limited.

With the exception of hole DPS-06-01, which failed to intersect any favourable geology, mineralization or alteration, all of the holes drilled on the Victoria Lake Property in 2006 were intended to be surveyed with the 2008 Pulse EM survey. They included five holes on the Long Lake Grid, four on the Swamp Grid and one on the Henry Waters Grid. However, three of the holes could not be surveyed due to inability to re-enter the boreholes with the survey equipment. The locations of the drill holes surveyed are shown in Figure 4.

<table>
<thead>
<tr>
<th>Hole</th>
<th>Grid</th>
<th>Easting</th>
<th>Northing</th>
<th>Azm./Dip</th>
<th>Length</th>
<th>Hole Surveyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL-06-01</td>
<td>Long Lake</td>
<td>478571</td>
<td>5356259</td>
<td>150/-45°</td>
<td>173m</td>
<td>Yes</td>
</tr>
<tr>
<td>LL-06-02</td>
<td>Long Lake</td>
<td>478432</td>
<td>5356235</td>
<td>150/-45°</td>
<td>164m</td>
<td>Could not be surveyed</td>
</tr>
<tr>
<td>LL-06-03</td>
<td>Long Lake</td>
<td>477981</td>
<td>5356363</td>
<td>150/-45°</td>
<td>*332m</td>
<td>Yes</td>
</tr>
<tr>
<td>LL-06-04</td>
<td>Long Lake</td>
<td>478502</td>
<td>5356655</td>
<td>150/-45°</td>
<td>212m</td>
<td>Yes</td>
</tr>
<tr>
<td>LL-06-05</td>
<td>Long Lake</td>
<td>477307</td>
<td>5355891</td>
<td>150/-45°</td>
<td>434m</td>
<td>Could not be surveyed</td>
</tr>
<tr>
<td>SG-06-01</td>
<td>Swamp Grid</td>
<td>476184</td>
<td>5358425</td>
<td>140/-45°</td>
<td>167m</td>
<td>Yes</td>
</tr>
<tr>
<td>SG-06-02</td>
<td>Swamp Grid</td>
<td>476506</td>
<td>5358951</td>
<td>140/-46°</td>
<td>122m</td>
<td>Yes</td>
</tr>
<tr>
<td>SG-06-03</td>
<td>Swamp Grid</td>
<td>476466</td>
<td>5358728</td>
<td>140/-45°</td>
<td>122m</td>
<td>Could not be surveyed</td>
</tr>
<tr>
<td>SG-06-04</td>
<td>Swamp Grid</td>
<td>476462</td>
<td>5359021</td>
<td>140/-45°</td>
<td>155m</td>
<td>Yes</td>
</tr>
<tr>
<td>HW-06-01</td>
<td>Henry Waters</td>
<td>477706</td>
<td>5360854</td>
<td>140/-45°</td>
<td>182m</td>
<td>Yes</td>
</tr>
<tr>
<td>DPS-06-01</td>
<td>DPS Grid</td>
<td>470593</td>
<td>5355067</td>
<td>140/-45°</td>
<td>134m</td>
<td>Not included in survey</td>
</tr>
</tbody>
</table>
8.0 Conclusions and Recommendations

The Victoria Lake Property is underlain by highly prospective volcanic, volcaniclastic and sedimentary rocks of the Long Lake Belt, which forms part of the Victoria Lake Supergroup. The Victoria Lake Supergroup hosts numerous significant base metal deposits including the Duck Pond and Boundary Deposits, as well as the zinc-rich Boomerang Deposit discovered by Messina Minerals in 2004 and situated approximately 6 kilometres northwest of the property.

Diamond drilling carried out in 2006 on four different exploration grids on the property intersected favourable geology and VMS-style alteration, particularly from the Long Lake grid. Borehole LL-06-03 intersected 122 meters of favourably altered volcanic rocks containing up to 50% sulphides locally as narrow, semi-massive bands. Strongly depleted sodium in conjunction with elevated zinc and copper within strongly altered rocks support the possibility of significant zones of base/precious metal mineralization occurring proximally.

Based on the encouraging results from the 2006 drilling program, further work including additional diamond drilling has been proposed. On the Long Lake Grid, ground work to extend the cut-grid and soil geochemical survey coverage to the southwest has been proposed, while on the Swamp Grid a limited basal-till geochemical sampling program has been proposed. Additional ground work on the DPS Grid, where the lone hole drilled in 2006 failed to intersect the anticipated mafic-felsic contact or explain the VLF conductor identified there, geological mapping aimed at revising the location of the mafic-felsic contact is recommended.

Following the results of the recommended ground work and interpretation of the borehole Pulse EM survey, additional diamond drilling should be carried out to follow-up on the encouraging results of the 2006 drilling campaign.
9.1 Expenditure Summary – Licence 8883M

Borehole Pulse EM Survey

Eastern Geophysical $56,975.00 (pro-rated) $22,790.00
Paragon Personnel Field Support $375.00

Sub-Total: $23,165.00

Helicopter Support

Universal Helicopters $57,377.30 (pro-rated) $22,950.92

Sub-Total: $22,950.92

Report Preparation

Jeff Morgan 3 days @ $400.00 (pro-rated) $480.00

Sub-Total: $480.00

Total: $46,595.92

Administration and Overhead (15%): $6,989.39

Grand Total: $53,585.31

9.2 Expenditure Summary – Licence 12380M

Borehole Pulse EM Survey

Eastern Geophysical $56,975.00 (pro-rated) $34,185.00

Sub-Total: $34,185.00

Helicopter Support

Universal Helicopters $57,377.30 (pro-rated) $34,426.38

Sub-Total: $34,426.38

Report Preparation

Jeff Morgan 3 days @ $400.00 (pro-rated) $720.00

Sub-Total: $720.00

Total: $69,331.38

Administration and Overhead (15%): $10,399.71

Grand Total: $79,731.09
10.0 List of References

Arseneau, V.

1999: Second year assessment report on bathymetry, GPS, magnetic and VLF surveys for reduced map staked licence 4685M. Big Arm property, Victoria Lake, West-Central Newfoundland, NTS 12A/06 (UTM Zone 21).

Evans, D.T.W.

Evans, D.T.W., Kean, B.F. and Dunning, G.R.

Evans, D.T.W. and Kean, B.F.

Kean, B.F.

1982: Victoria Lake map area (12A/6), Newfoundland. Newfoundland Department of Mines and Energy, Mineral Development Division, Map 82-009.

Kean, B.F. and Evans, D.T.W.
Kean, B.F. and Evans, D.T.W.

Kean, B.F. and Jayasinghe, N.R.

Robertson, Ken,

Sparkes, B.A.,

Sparkes, B.A.,

Sparkes, B.

Swinden, H.S.

Williams, H.

Williams, H., Colman-Sadd, S.P. and Swinden, H.S.
11.0 List of Personnel and Contractors

Personnel

David Copeland – Exploration Manager (Paragon Minerals), Gander, NL

Sam Burton – Geological Technician (Paragon Minerals), King’s Point, NL

Jeff Morgan – Senior Geologist \ Lands Manager (Crosshair Exploration), Mount Pearl, NL

Contractors/Services

Eastern Geophysics Limited, West Pubnico, NS – Borehole Pulse EM Survey

Universal Helicopters Newfoundland Ltd., Pasadena, NL – Helicopter Services
12.0 Statement of Qualifications

Jeffery A. Morgan, P.Geo., B.Sc. (Hons)
7 Ashford Drive
Mount Pearl, NL
A1N 2Z1
Telephone: 709-368-9248
Email: jeff@crosshairexploration.com

I, Jeffery A. Morgan, do hereby certify that:

1. I graduated with a Bachelor of Science (Honours) degree in Geology from Memorial University of Newfoundland in 1996.

2. I have worked continuously in my profession since 1996 for several mineral exploration and mining companies throughout Ontario, Manitoba, Newfoundland and Labrador, and the Northwest Territories.

3. Since April 2006 I have been employed as Senior Geologist/Lands Manager with Crosshair Exploration & Mining Corporation, Suite 202, Kenmount Business Centre, 66 Kenmount Road, St. John's, NL, A1B 3V7.

4. I am a registered member of the Professional Engineers and Geoscientists of Newfoundland and Labrador (PEG-NL), membership number 04934.

5. I hold no direct interest in any of the mineral claims that are the subject of this report.

6. All statements, interpretations, and conclusions made in this report are based on data and observations believed to be accurate and correct.

7. I am not aware of any material fact or material change with respect to the subject matter of this report that is not reflected in the report, the omission to disclose which makes the report misleading.

Dated on this 24th day of July, 2008.

Jeffery A. Morgan B.Sc. (Hons)
Senior Geologist / Lands Manager
Appendix I

Borehole Pulse EM Survey
- Logistical Report -
(Eastern Geophysics Limited)
LOGISTICS REPORT

Paragon Minerals Corporation
Borehole EM Survey
Victoria Lake Project
Central NL
Project Manager: David Copeland

Project # 0725pem Ref: Lr0725pem

Introduction
This field report covers the survey procedure and parameters for the 3-Dimensional Borehole Pulse E.M. survey carried out for Paragon Minerals Corporation on the Victoria Lake Project, central, NL.

Borehole Survey Equipment
The equipment used was the Crone Pulse EM system. The Borehole survey included a 4.8 kw. transmitter, an 11 HP Motor Generator, an axial component (Z) probe, and a cross-component (XY) probe. The synchronization for this borehole survey was carried out with cable link.

Equipment List:

- Receiver # 102
- X-Y Probe #50
- Regulator # 304
- Generator # 70
- Slip ring #55-29
- Resistor box # 20
- Trimble XRS PRO - DGPS system

- Transmitter #218
- Orientation Tool # 15
- Z-Probe #104
- Borehole cable S-59(450m)/M-25(800m)
- Counter #74
- Dummy cable (~1500m)

Borehole Survey Procedure
Normal procedure in borehole surveys is to dummy-probe the holes first to determine if they can be safely surveyed. Separate passes are then made down the hole using the Z and XY probes in order to produce the 3D measurement of the secondary EM field. The correction for XY probe rotation as it moves down the hole is done using the measurement of the primary field from the PP channel, applying a cleaning algorithm to remove most of the secondary field contamination, and comparing this to theoretical values. Knowledge of the coordinates of the borehole, loop location, and the hole deviations are required in advance in order to calculate the theoretical primary pulse (PP). A second method of rotation correction involves the use of an optional attachment, or orientation tool, for the XY probe. The attachment uses dipmeters to calculate the probe rotation and hole inclination (but not the azimuth). The standard PP method is as effective as the
dipmeter attachment except where very strong in-hole conductors are encountered, and where the primary field vector points nearly parallel to the hole. The orientation tool eliminates concern over transmit loop location. It is also necessary to have very accurate loop and borehole collar coordinates surveyed in with DGPS in order to maintain proper control of the geometry. This is essential for step response calculations.

Personnel

Kirk Pittman and Lewis Combdon

Survey Parameter

<table>
<thead>
<tr>
<th>Survey Parameter</th>
<th>Collar coordinates: 478563.9E – 5356265.9N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL-06-01</td>
<td>Loop size 300m x 300m</td>
</tr>
<tr>
<td>LOOP 1</td>
<td>Loop coordinates 478242.4E – 5356287.1N</td>
</tr>
<tr>
<td></td>
<td>478400.8E – 5356046.0N</td>
</tr>
<tr>
<td></td>
<td>478719.7E – 5356257.3N</td>
</tr>
<tr>
<td></td>
<td>478565.1E – 5356510.9N</td>
</tr>
<tr>
<td>Current</td>
<td>20.0 AMPS</td>
</tr>
<tr>
<td>Time Base</td>
<td>16.66</td>
</tr>
<tr>
<td>Ramp Time</td>
<td>1.5 ms</td>
</tr>
<tr>
<td>Sync:</td>
<td>Cable</td>
</tr>
<tr>
<td>Property</td>
<td>Long Lake</td>
</tr>
<tr>
<td>Date:</td>
<td>January 25, 2008</td>
</tr>
<tr>
<td>Dip</td>
<td>45° / AZ 150°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Survey Parameter</th>
<th>Collar coordinates: 478495.3E - 5356660.5N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL-06-04</td>
<td>Loop size 300m x 300m</td>
</tr>
<tr>
<td>LOOP 2</td>
<td>Loop coordinates 478274.3E – 5356754.4N</td>
</tr>
<tr>
<td></td>
<td>478400.8E – 5356551.5N</td>
</tr>
<tr>
<td></td>
<td>478727.5E – 5356699.8N</td>
</tr>
<tr>
<td></td>
<td>478571.3E - 5356951.4N</td>
</tr>
<tr>
<td>Current</td>
<td>20.0 AMPS</td>
</tr>
<tr>
<td>Time Base</td>
<td>16.66</td>
</tr>
<tr>
<td>Ramp Time</td>
<td>1.5 ms</td>
</tr>
<tr>
<td>Sync:</td>
<td>Cable</td>
</tr>
<tr>
<td>Property</td>
<td>Long Lake</td>
</tr>
<tr>
<td>Date:</td>
<td>January 27, 2008</td>
</tr>
<tr>
<td>Dip</td>
<td>45° / AZ 150°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Survey Parameter</th>
<th>Collar coordinates: 477973.1E – 5356367.7N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL-06-03</td>
<td>Loop size 400m x 400m</td>
</tr>
</tbody>
</table>
Loop coordinates: 477703.4E – 5356564.7N
477947.4E – 5356199.9N
478297.4E - 5356431.4N
478065.2E – 5356784.7N
Current: 20.0 AMPS
Time Base: 16.66
Ramp Time: 1.5 ms
Sync: Cable
Property: Long Lake
Date: February 01, 2008
Dip: 45° / AZ 150°

LOOP 2

Collar coordinates: 476175.7E – 5358431.0N
Loop size: 300mx300m
Loop coordinates: 475881.7E – 5358528.0N
476052.8E – 5358281.5N
476330.7E – 5358405.0N
476136.3E – 5358688.0N
Current: 20.0 AMPS
Time Base: 16.66
Ramp Time: 1.5 ms
Sync: Cable
Property: Swamp Grid
Date: February 13, 2008
Dip: 45° / AZ 140°

SG 06-01

SG 06-02

Collar coordinates: 476419.1E – 5358780.0N
Loop size: 300mx400m
Loop coordinates: 476207.7E – 5359055.0N
476449.8E – 5358743.0N
476669.0E - 5358917.0N
476410.2E – 5359231.5N
Current: 20.0 AMPS
Time Base: 16.66
Ramp Time: 1.5 ms
Sync: Cable
Property: Swamp Grid
Date: February 13, 2008
Dip: 46° / AZ 140°

LOOP 1

SG 06-04

Collar coordinates: 476454.7E – 5359027.0N
Loop size: 300mx400m
Loop coordinates: 476207.7E – 5359055.0N
476449.8E – 5358743.0N
476669.0E - 5358917.0N
476410.2E – 5359231.5N

Current 20.0 AMPS
Time Base 16.66
Ramp Time 1.5 ms
Sync: Cable
Property Swamp Grid
Date: February 13, 2008
Dip 45° / AZ 140°

HW 06-01
Collar coordinates: 477697.0E – 5360859.0N

LOOP 1
Loop Size 300mx300m
Loop coordinates 477424.2E – 5360853.0N
477628.5E – 5360635.0N
477869.0E – 5360830.5N
477655.8E - 5361052.5N

Current 20.0 AMPS
Time Base 16.66
Ramp Time 1.5 ms
Sync: Cable
Property Henry Waters
Date: February 15, 2008
Dip 45° / AZ 140°

Operator Journal

Project # 0725-1: January 20 to February 15, 2008

Sunday, January 20, 2008

Day-1: Bad Weather: We went to the Universal Helicopter office in Pasadena with Bennett d’Eon to meet the pilot and to see if we could fly to the Long Lake grid. While we were waiting for the weather to clear up we went over some safety procedures with the pilot. After the meeting the weather was worse so we went back to the Marble Inn cabin where we are staying.

Monday, January 21, 2008

Day-2: Bad Weather: Called the Universal Helicopter pilot and he said the weather was not good for flying and for us to check back with him at noon. Called back at noon and the pilot said the weather was still bad and the forecast was not good
for the rest of the day.

Tuesday, January 22, 2008
Day-3: Operating: The weather finally clear up around 9:30 am so we loaded up the helicopter and flew to the Long Lake grid. Unloaded the dummy equipment and dummied hole # LL-06-01 to the depth of 173 meters. Found the other 3 hole and shoved them out so we could dummy them tomorrow. The helicopter came back with another load so we unloaded the equipment off the helicopter and packed it up for tomorrow.
(Used 2 snowmobiles today = 2 snowmobiles days to date)

Wednesday, January 23, 2008
Day-4: Bad Weather: The weather only cleared up late in the afternoon so it was too late for us to fly in. The pilot said we only had time to sling in one load so we put some equipment in a sling and he flew it to the grid.

Thursday, January 24, 2008
Day-5: Operating: Flew to the Long Lake grid and moved the transmitter gear to the nearest loop edge then started to put out loop for this survey. It took some time putting out the loop because the snow was really deep then went back at the drill site to start reading hole LL-06-01. Read the Z probe from 20 meters down to 170 meters, packed up the equipment and flew back to Pasadena.
(Used 2 snowmobiles today = 4 snowmobiles days to date)

Friday, January 25, 2008
Day-6: Operating: Flew to the Long Lake grid, set up the equipment and read the XY on hole # LL-06-01 from 20 meters down to 170 meters. Picked up loop 1, packed up the equipment and moved to the next hole, LL-06-04. Flew back to Pasadena.
(Used 2 snowmobiles today = 6 snowmobiles days to date)

Saturday, January 26, 2008
Day-7: Operating: Flew to the Long Lake grid and dummied hole # LL-06-04. Had to light a fire around the casing of the hole to taw the ice out before we could dummy it. The hole was clear to the bottom and we put out loop the 300 x 300 meter loop. Flew back to Pasadena.
(Used 2 snowmobiles today = 8 snowmobiles days to date)

Sunday, January 27, 2008
Day-8: Operating: Flew to the Long Lake grid and set up the transmitter and generator on loop 2 and read the Z and XY on hole # LL-06-04. After we read the hole we packed up all borehole gear into slings to move by helicopter to the next hole.
Flew back to Pasadena.
(Used 2 snowmobiles today = 10 snowmobiles days to date)

Monday, January 28, 2008
Day -9: Operating: Flew to the Long Lake grid and picked up loop 2. It was snowing when we arrived at the grid.

.5 Bad Weather: It was snowing harder as the day progressed so we called Universal to pick us at 12:00 noon and flew back to Pasadena.

(Used 2 snowmobiles for ½ day today = 11 snowmobiles days to date)

Tuesday, January 29, 2008
Day-10: Bad Weather: Snow and blowing snow all day.

Wednesday, January 30, 2008
Day-11: Bad Weather: Snow and blowing snow all day again.

Thursday, January 31, 2008
Day-12: Operating: Flew to the Long Lake grid and dummied hole # LL-06-03, 330 meters. After we dummied the hole we put out loop 3. The lines where really hard to walk in because of the mild weather the last few days. Flew back to Pasadena.

(Used 2 snowmobiles today = 13 snowmobiles days to date)

Friday, February 01, 2008
Day-13: Operating: Flew to the Long Lake grid and read the Z and XY on hole # LL-06-03, from 20 meters to 320 meters. Lewis read the GPS on the loop while Kirk was reading the hole. After the hole was read we picked up loop 3, packed up the equipment and slung the equipment by helicopter to hole LL-06-05. Flew back to Pasadena.

(Used 2 snowmobiles today = 15 snowmobiles days to date)

Saturday, February 02, 2008
Day-14: Bad Weather: Snow and blowing snow all day.

Sunday, February 03, 2008
Day-15: Bad Weather: Snow and blowing snow all day again.

Monday, February 04, 2008
Day-16: Operating: Flew to the Long Lake grid and moved the rest of the equipment to hole # LL-06-05. Tried to dummy hole LL-06-05 but at 20 meters down it was blocked. Tried to clear the hole for an hour and a half but could not get it clear so we packed up dummy gear and move it out so the helicopter could move it
for use to next grid. Called Universal to come and move the equipment but when the helicopter arrived it was snowing and he could not move it for us so we flew back to Pasadena.
(Used 2 snowmobiles today = 17 snowmobiles days to date)

Tuesday, February 05, 2008
Day-17: Operating: Flew to the Long Lake grid and moved all the equipment to the Swamp grid by helicopter. Tried to dummy hole SG-06-03 but it was blocked at 4 meters and we could not clear it so we moved the equipment to hole SG-06-04. Dummied hole SG-06-04 and SG-06-02, they were both clear to the bottom. We then put out loop 1, 300 x 400 meters and went back to set up transmitter. Did a pp test on surface for the ZTS on receiver then survey the Z from 20 meters to 120 meters on hole SG-06-02. By this time it was time to pack up for the day and fly back to Pasadena.
(Used 2 snowmobiles today = 19 snowmobiles days to date)

Wednesday, February 06, 2008
Day-18: Bad Weather: The pilot said the weather was too bad to fly so we returned to the Marble Mountains Cabins.

Thursday, February 07, 2008
Day-19: Bad Weather: We drove to the Universal Helicopters hangers to see if it was ok to fly into the Swamp grid. The pilot said that the weather was still too bad to fly so we return to the Marble Mountains Cabins.

Friday, February 08, 2008
Day-20: Operating: We flew to the Swamp Grid and setup on hole SG-06-04 and read the Z probe from 20 meters to 150 meters. We then moved the equipment and dummied hole SG-06-01. The hole was good so we put out loop 2. The helicopter came to pick us up as soon as we finished laying out this 300x300 meter loop.
(Used 2 snowmobiles today = 21 snowmobiles days to date)

Saturday, February 09, 2008
Day- 21: Operating: We flew to the Swamp grid, packed up the dummy gear and moved the gear by snowmobiles to the Henry Water grid. Dummied hole HW-06-01 and put out a 300 x 300 meter loop.
(Used 2 snowmobiles today = 23 snowmobiles days to date)
Sunday, February 10, 2008
Day-22: Bad Weather: We tried to fly to the Swamp grid but the weather was getting so bad that the pilot decided to turn around and return to Pasadena.

Monday, February 11, 2008
Day-23: Bad Weather: We drove to Universal Helicopters to see if it was ok to fly to the Swamp grid. The pilot confirmed that the weather was not good enough so we returned to the Marble Mountains Cabins.

Tuesday, February 12, 2008
Day-24: Bad Weather: The pilot said the weather did not look good but if it cleared up he would call us. An hour later the weather was clearing a bit so we drove to Universal in Pasadena. By the time we got to Pasadena the weather conditions were deteriorating again and the pilot called it off for the day.

Wednesday, February 13, 2008
Day 25: Operating: We flew to the Swamp grid and read the XY on hole SG-06-04 from 20 meters down to 150 meters. We then moved to SG-06-02 and read XY from 20 meters to 120 meters. Then moved all the equipment to loop 2 and read the XY on hole SG-06-01 from 20 meters 160 meters. Lewis read the GPS on the loops and picked up loop 1 while Kirk was surveying the holes.
(Used 2 snowmobiles today = 25 snowmobiles days to date)

Thursday, February 14, 2008
Day-26: Bad Weather: Drove to Universal Helicopters to see if it was ok to fly into the Swamp grid but the pilot said that the weather was to bad too fly so we returned to the Marble Mountains Cabins.

Friday, February 15, 2008
Day 27: Operating: We flew to the Swamp grid, picked up loop 2 and moved all the equipment by helicopter to the Henry Waters grid. Read the Z and XY on hole HW-06-01 from 20 meters to 180 meters. Picked up the loop at the Henry Waters grid and moved all the equipment by helicopter to the next client’s property. This completes project 0725-1.
(Used 2 snowmobiles today = 27 snowmobiles days to date)

PROJECT SUMMARY

- **Long Lake**
 LL-06-01
 LL-06-04
 LL-06-03
Swamp Grid
SG 06-01
SG 06-02
SG 06-04

Henry Waters
HW 06-01
Paragon Minerals Corporation
Swamp Grid
Linear Plot Hole SG-06-01 Z Component
Eastern Geophysics Limited
Paragon Minerals Corporation
Swamp Grid
Hole SG-06-01 Y Component
Eastern Geophysics Limited