<table>
<thead>
<tr>
<th>Licence/Property</th>
<th>No. of Claims</th>
<th>Assessment Year</th>
<th>Date Issued</th>
<th>NTS Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>21724M</td>
<td>6</td>
<td>1</td>
<td>2013-12-13</td>
<td>12A15</td>
</tr>
<tr>
<td>21864M</td>
<td>4</td>
<td>1</td>
<td>2014-02-20</td>
<td>12A15</td>
</tr>
</tbody>
</table>

Number of Volumes: ________________________________

Digital Copy Only ✔

Enclosures (indicate number of each):

CD: _________ DVD: _________ Flash drive: _________ Paper Maps: _________

Other: __

Received: 2014-11-22

Comments: Resubmitted expenditures and UTM coordinates added to report file

Signed: [Signature]
Date: February 23, 2015
First Year Assessment Report

Wayde Guinchard

Lic. # 021724M (6 claims) Lic.# 021864M (4 claims)

Claims are in the Yellow box. Yellow pegs shows Canstar Drilling.

Prepared By: Wayde Guinchard

For: Wayde Guinchard
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location and Access</td>
<td>3</td>
</tr>
<tr>
<td>History of Mining in the Buchans-Roberts Arm Belt</td>
<td>4</td>
</tr>
<tr>
<td>This year’s Work</td>
<td>7</td>
</tr>
<tr>
<td>History of Geological Mapping</td>
<td>7</td>
</tr>
<tr>
<td>History of Geophysical Surveys</td>
<td>8</td>
</tr>
<tr>
<td>History of Geochemistry Surveys</td>
<td>9</td>
</tr>
<tr>
<td>Regional Geology</td>
<td>9</td>
</tr>
<tr>
<td>Results and Recommendation</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
<tr>
<td>Appendix A – Personnel and Expenses</td>
<td>18</td>
</tr>
</tbody>
</table>
Location and Access

The Buchans Junction property is located approximately 30 kilometers northeast of the historic mining town of Buchans, located in central Newfoundland. The property is located in central Newfoundland on NTS Mapsheet 12A/15. The claims have excellent road access from logging roads which travel westward and north into the property from the Buchans Highway located immediately east of the claims. The Buchans Highway is located northeast and parallel to the claims and connects with the Trans Canada Highway located 35 kilometers to the northeast of Buchans Junction at Badger. Local road and power infrastructure is excellent.
The Buchans-Robert’ Arm Group has been the source of several mining operations.

Location of Buchans and Gullbridge Mines relative to my Buchans Junction Proprty.

The highest grade and most profitable VMS deposit in all of eastern North America was the Robert’s Arm Belt located 25 kilometers southwest of my Buchans Junction property.

The highest grade and most profitable VMS deposit in all of eastern North America was the Buchans Mine, which is hosted within the Buchans – Robert’s Arm Belt located 25 kilometers southwest of the Buchans Junction property. The Buchans Mine produced 16,196,876 tonnes of high grade base metal ore over a 57 year production history. During the 57 years of production, the mill-head grade averaged 14.51% Zn, 7.56% Pb, 1.33 %Cu, 126 g/t Ag and 1.37 g/t Au, establishing it has Newfoundland’s largest base metal producer.
The site of the old Buchans Mine.

The **Gullbridge Mine** is located 30 kilometers along strike to the northeast of the property. This mine operated from 1967 to 1972 and produced 3 million tonnes at an average grade of 1.1%, with approximately 1.8 million tonnes remaining which has an average grade of 0.8% Cu of chalcopyrite occurs within a hydrothermally altered basalt unit characterized by the presence of cordierite and anthophyllite.

Pelly's Island was a small historical producer that operated from 1881 to 1908 and produced 425,000 tonnes of cupriferous massive pyrite, with an estimated an average grade of 1.23% Cu (Grimley, 1968).

Another Significant undeveloped prospects within the Buchans – Robert’s Arm Belt include the **Clementine Lake** deposit near Buchans (363,000 tons of 4.9% Zn, 2.6% Pb, 0.3% Cu), the **Lake Bond** deposit (1.1 million tonnes at 2.12%Zn, and 0.3%Cu.) which is correlated with the same volcanic stratigraphy as the historical Gullbridge Mine, and the **Little Sandy River** deposit (180,000 tons of 1.91% Cu).

The most significant polymetallic base metal discovery made outside of the Buchans Mine area in the history of exploration in the Buchans – Robert’s Arm Belt is located on claims located adjacent to my
Buchans Junction property. The Mary March/Nancy April discovery was made in drill hole DDH-during the year 1999 by Phelps Dodge. This drill hole returned a 9.33 meter wide zone of massive sulphide mineralization that averaged 10.33% Zn, 1.67% Pb, 0.66% Cu, 118.10 g/t Ag and 4.11 g/t Au. Extensive, kilometre-scale hydrothermal alteration surrounding the Mary March discovery hole was identified in subsequent drill holes. The Mary March/Nancy April discovery drilling is 500m from my Buchans Junction claims boundary. See Canstar drill located on road that provides access to my Property.
THIS YEARS WORK

Field work

Typical Landscape. Very little outcrop. Poor area for ground prospecting.

We spent 2 days prospecting all over the property and found very little outcrop, however, none that showed signs of sulfides. Several samples were taken however not sent for assay because they did not appear good enough to warrant the cost. We set up our tent in a gravel pit and stayed there for two nights. We used up 2 days getting there and back home.

Primary work was research and compilation of all the government reports and assessment reports that I could find on the Natural Resources web-site.

History of Geological Mapping

The earliest record of regional government geological mapping within the Buchans – Robert’s Arm belt was provided in a report completed by Espenshade (1937). This was followed by additional maps and geological reports completed by Kalliokowski (1955), Neale and Nash (1963), Williams (1962, 1967), and Anderson (1972). Dean (1976) completed the first modern compilation of the mineral deposits and geology of Notre Dame Bay at a scale of 1:63,350. Kean (1981) produced a coloured 1:250,000 scale geological map of the central volcanic belt.

Group and divided the geological rock types into calc-alkaline and tholeiitic terranes. A 1:50,000 scale geological map was produced for the Badger mapsheet (12A/16) by Evans et al., 1994.

The central Mary March Brook area was recognized as an important geological link between the Buchans Mine and Gullbridge Mine by Thurlow and Swanson (1987), and Pope et al.,(1991).

Field mapping combined with whole rock analysis by Zagorevski et al., (2007b) resulted with a proposal for reinterpretation of units initially proposed by Thurlow and Swanson. Several new geological units in the areas covered by the Buchans (12A/15) and Badger (12A/16) map sheets were introduced, including the Mary March Formation, Harry’s River Ophiolite and Seal Pond Formation.

In summary the geological mapping in the Buchans – Roberts Arm belt is far more complex than what was initially mapped by government geoscientists, and the geology as it is currently understood continues to evolve at this time. While outcrop exposures are very good near the western limit of the belt, the volcanic stratigraphy around eastern margin, including the Mary March Brook discovery area is poorly exposed and will require further studies before the geology is mapped with a high degree of certainty. Locally around the Mary March Brook area, the geology can be interpreted from drill core logs due to the extensive amount of drilling completed around the discovery area. In other high potential areas for volcanogenic massive sulphide deposits along strike from the Mary March discovery, there are extensive areas with little or no drilling data where outcrop exposures are extremely poor. Interpretation of the geology in these low lying areas often rely heavily on geophysical surveys such as airborne magnetic data.

History of Geophysical Surveys

The first airborne survey to be flown over part of the Buchans-Robert’s Arm Belt was a Dighem survey flown in 1982 for Abitibi Price. A second Dighem survey was flown in the belt by Noranda in 1992. Billiton Exploration Canada covered a large portion of the belt with a GEOTEM survey in 1998.

The Geological Survey of Canada (GSC) flew reconnaissance-scale 1:50,000 airborne magnetic, Gradiometer and VLF surveys which were processed by Todd and Ready (1989). The GSC also flew a radiometric survey over the Robert’s Arm Group to evaluate potassium anomalies in an attempt to target VMS alteration zones.

In 2007 the GSC flew aeromagnetic surveys over the the Gullbridge North and Gullbridge South Blocks and this data was processed by Dumont and Potvin (2007a, 2007b). The areas of coverage for each of these documented airborne surveys can be observed on the Newfoundland and Labrador Geoscience Atlas available on line through the Newfoundland and Labrador Government of Natural Resources Geological Survey website at the following web address - http://gis.geosurv.gov.nl.ca/resourceatlas/viewer.htm.

The detailed first derivative magnetic surveys have proven to be particularly useful in mapping individual volcanic horizons which have a uniform magnetic susceptibility, such as specific basalt and dacite flow
units, which quite often display a sharp magnetic contrast with felsic volcanic units that normally have a lower magnetic susceptibility. Difficulty in the interpretation of the magnetic data is encountered in areas where there is a combination of complex fold features, which have been over-printed by thrust faults which causes interleaving of the individual, younger and older units of mixed origin. Numerous late stage magnetic dikes also crosscut the stratigraphy, along with high angle late stage faults that cross-cut fold axis, add to the difficulty in accurately interpreting the airborne magnetic data, particularly in areas of deep over-burden with limited or no outcrop.

Ground geophysics surveys commenced in the belt as a result of follow-up on the VMS targets identified by the airborne surveys. Generally speaking, the VMS ore deposits in the Buchans – Robert’s Arm Group have a poor airborne geophysical response due to the general absence of graphite and the high percentages of zinc and barite contained within the ore. Initially the weak responses were considered to be the best targets for ground follow-up geophysics surveys.

Abitibi Price cut picketed grid lines across these target areas and conducted ground magnetic, VLF-EM, Max Min II and/or gravity surveys throughout the belt. Abitibi Price identified two important VMS targets, including the Mary March polymetallic target and the Beaver Pond zone. The Mary March zone is located 1.5 kilometers along strike to the south east of the property, while the Beaver Pond zone is located 1.5 kilometers along strike to the northeast of the property.

In 1999, Phelps Dodge conducted a down-hole pulse EM survey on the A.N.D. Chartered Land down several of the diamond holes associated with the Mary March discovery zone. The results demonstrated that the zinc-barite rich massive sulphide zone intersected in the discovery drill hole MM DDH 294-7 had a poor EM response and no off hole EM anomalies were detected.

More recently during the period from 2008 - 2009, Royal Roads Corp., the current owners of the exhausted Buchans ore deposits, conducted a deep penetrating Titan 24 geophysics survey over several of the historical deposits including the Lucky Strike mine. Although multiple targets were identified by the survey, only modest results were returned from the drill testing of these targets.

In 2008, Celtic Minerals conducted a time domain IP/Resistivity survey utilizing a proprietary “Insight Section Array,” method over the Beaver Pond target which covered a portion of the property. The IP survey identified chargeability anomalies that were directly correlated to two stringer sulphide zones associated with the Beaver Pond VMS mineralization.

In summary, the most effective geophysical targeting method for targeting VMS ore deposits similar to the Buchans mineralization is a gravity survey, due to the high specific gravity of the massive sulphide ore. Gravity surveys alone are not sufficient for targeting purposes and need to be combined with other exploration approaches such as magnetic surveys, bedrock mapping and trenching, and soil / litho-geochemistry geochemistry.
History of Geochemistry Surveys

Initially Davenport and Nolan (1988) published results for lake bottom sediment sampling for the elements Zn, Cu, Pb, Au, As, Ni, Mo and Sb for the Buchans-Robert’s Arm Belt. Since that time, the Newfoundland and Labrador Department of Natural Resources Geological Survey has produced a digital lake bottom sediment geochemical atlas of Newfoundland which can be downloaded from the Newfoundland and Labrador Government of Natural Resources Geological Survey website - http://gis.geosurv.gov.nl.ca/resourceatlas/viewer.htm.

The GSC (Klassen, 1994) conducted reconnaissance scale (1:100,000) till sampling and mapping programs over the Buchans Group, while the Newfoundland Geological Survey conducted a similar till sampling program over the Robert’s Arm Group. Digital till coverage is available for a limited area south of the property, near the Red Indian Lake – Burgeo area and can be downloaded from the website http://sis.agr.gc.ca/cansis/nsdb/detailed/nf/zipfiles.

Many exploration groups have conducted large detailed soil geochemistry surveys but very little of this information has been captured in digital form by the government. Extensive line cutting and soil geochemistry surveys were conducted over the Buchans Junction property by Noranda. Soil geochemistry maps and results are presented in Open File 012A/1231.

Regional Geology

The regional geology of central Newfoundland records an important geological event in the development of the Appalachian Orogen by the opening and subsequent closing of the early Paleozoic Iapetus Ocean. Island arc and back-arc basins lie adjacent to a major tectonic boundary known as the Red Indian Line. In Central Newfoundland, the Red Indian Line (RIL) defines a major tectonic boundary that extends across the entire province (Figure 3), with the Laurentian (North American) plate located to the west of the RIL, while the Gondwanan (European and African) plate is located to the east. The tectonic evolution of the Central Newfoundland Appalachians took place from the early Ordovician to late Silurian (Zagorevski, 2006).

The destruction of the Iapetus Ocean and subsequent development of the Appalachian Orogen was complex, resulting with a collage of pre-Silurian oceanic, back-arc, island-arc and early sialic fragments collectively termed the “Dunnage Zone.” Research along the Dunnage Zone resulted with further subdivisions of this zone across both sides of the RIL, with the Laurentian side of the Dunnage Zone being subdivided into the Notre Dame Arc and Annieopsquotch accretionary tract, while on the Gondwanan side of the RIL the Dunnage Zone was further subdivided into the Exploits Subzone and Gander Zone (Zagorevski and Rogers, 2008).

Extensive thrusting took place during the collision event, with different thrust orientations due to a strike-slip component that occurred along the RIL, as well as during later stages which resulted with frequent offsetting and imbrications of the geological units within the Dunnage Zone.
Mineral deposits formed within the highly deformed terrain of the Dunnage Zone. The Buchans-Robert’s Arm volcanic Belt is Ordovician in age and forms the bulk of the Notre Dame Subzone. Radiometric dates from the Buchans Group and Robert’s Arm Group are virtually the same (473 Ma) and the Mary March area is centrally located, making an important link between the economically important Buchans and Gullbridge mines.

The Buchans-Robert’s Arm belt is comprised of bimodal, submarine basalt-rhyolite assemblages with locally important immature volcanoclastic and sedimentary units. Mafic volcanic are commonly pillowed, although massive flows and pillow breccias are also present. Discrete felsic volcanic centres have associated proximal breccia facies and an abundance of volcanoclastic deposits. The metamorphic grade is prehnite-pumpellyite to lower green-schist and penetrative deformation is only locally developed. The Hungry Mountain Complex represents a deformed igneous terrain which has been thrust upon the Buchans-Robert’s Arm Belt. The late stage Topsails Granite was intruded post tectonically during the Siluro-Devonian.

Results and recommendation

Given the lack of outcropping in the area, no further ground prospecting is considered warranted. Geophysics seems to be the only option, however, my research of the files and data available on the property, I do not see what sort of survey I can carry out to enhance the property further. It is my intention to try and option the claims based on the historical data and my proximity to the Mary March/Nancy April discovery.

Wayde Guinchard

28 Caribou Place

St. John’s, NL A1B0B8
References

Newfoundland and Labrador Open File Company Assessment Reports

012A/034
Title: Report of Geophysics, Geochemistry and Diamond Drilling, Buchans Junction, Newfoundland, Mary March Area Claims
Author: Gary Woods, Arnis Gubins, Stan Hoffman
Year: 1987
Company: BP Resources Canada Ltd. – Mining Division
NTS: 12A/16

012A/16(460)
Title: First Year Report on Geology and Geochemistry, Buchans Junction, Central Newfoundland
Author: J.C. Poole and J.G. Thurlow
Year: 1987
Company: BP Resources Canada Limited – Selco Division
NTS: 12A/16

012A/0852
Title: 1995 Report of Work by Noranda Mining and Exploration
Author: Gary Woods, Robert Banville, Allan Huard, Dean Sheppard, Gerry Squires, Andrew Hussey, Trevor Rice
Year: 1995
Company: Noranda Mining and Exploration Inc.
012A/0636
Title: First Year Assessment Report (Geology, Geochemistry, Geophysics, Drilling) on the Mary March Property
Author: Gerald Squires
Year: 1992
Company: Noranda Exploration Company Limited
NTS: 12A/16

012A/1231
Title: Noranda Mining and Exploration Inc. Atlantic Region. Precious and Base Metal Properties Available for Option.
Author: Prepared by Noranda Staff
Year: 1998
Company: Noranda
NTS: 12A/16

012A/16/0792
Title: Second Year Assessment Report on the Mary March Brook Property
Author: Benoit Drolet
Year: 1998
Company: Noranda Mining and Exploration Inc.
NTS: 12A/16Buchans Junction Property 016037M and 016039M Xmet Inc. Page 21

012A/0807
Title: The Buchans Junction First Year Assessment Report. A Report on Geological and
Geochemical Surveys Performed on Licenses 4575M and 4778M.

Author: Barry J. Greene

Year: 1997

Company: Celtic Minerals Ltd.

NTS: 12A/15

NFLD/2800

Title: A Geological Interpretation of the 1998 GEOTEM Airborne EM and Magnetic Survey of the Area between Lake Bond and Red Indian Lake, Central Newfoundland

Author: Roger Wallis, Geological Consultant

Year: 1999

Company: Billiton Exploration Canada Ltd., Celtic Minerals Ltd., and Jilbey Exploration Ltd.

NTS: 12A/9, 12A/10, 12A/15, 12A/16, and 12H/1

NFLD/2792

Title: Report on the CDI Re-processing of the 1998 GEOTEM Data for Block D of the Buchans Project in Central Newfoundland

Author: Wayne Petit, Pr Sci Nat

Year: 2000

Company: Billiton Exploration and Development

NTS: 12A/9, 12A/10, 12A/15, 12A/16, and 12H/1

Buchans Junction Property 016037M and 016039M

Xmet Inc. Page 22

012A/1382

Title: 2008 Assessment Report on Geophysical Prospecting on the Buchans Junction Property
Author: Elliott Stuckless

Year: 2009

Company: Celtic Minerals Ltd.

NTS: 12A/15

Publications

Appendix A

<table>
<thead>
<tr>
<th>Personnel and expenses</th>
<th>Licence 021724M</th>
<th>21864M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayde Guinchard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 days Field work</td>
<td>$300</td>
<td>$100</td>
</tr>
<tr>
<td>5 days research and compilation</td>
<td>$300</td>
<td>$200</td>
</tr>
<tr>
<td>2 days report preparation</td>
<td>$100</td>
<td>$100</td>
</tr>
<tr>
<td>Myrtle Guinchard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 days field work</td>
<td>$300</td>
<td>$100</td>
</tr>
<tr>
<td>Meals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 x 25</td>
<td>$150</td>
<td>$ 50</td>
</tr>
<tr>
<td>Accommodations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 50</td>
<td>$ 50</td>
<td>$ 50</td>
</tr>
<tr>
<td>Gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$150</td>
<td>$ 50</td>
</tr>
<tr>
<td>Administration (15%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$150</td>
<td>$150</td>
</tr>
<tr>
<td>Total</td>
<td>$1500</td>
<td>$800</td>
</tr>
</tbody>
</table>

Distribution of cost

<table>
<thead>
<tr>
<th>Licence</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>021724M</td>
<td>$1500</td>
</tr>
<tr>
<td>021864M</td>
<td>$800</td>
</tr>
</tbody>
</table>
Zone 21

UTM 532685m E 5409285m N
UTM 534670m E 5410870m N