Registry File Nos: 774: 5774

Geological Survey No: 012A/13/1521

Confidential Until: 2015-04-30

Mineral Rights:
- Licence
- Extended Licence
- Impost
- Mining Lease
- Regional
- Other

<table>
<thead>
<tr>
<th>Licence/Property</th>
<th>No. of Claims</th>
<th>Assessment Year</th>
<th>Date Issued</th>
<th>NTS Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>10375M</td>
<td>20</td>
<td>6 (C-2)</td>
<td>2004-11-22</td>
<td>12A/13</td>
</tr>
</tbody>
</table>

Number of Volumes: ________________

Digital Copy Only ☑

Enclosures (indicate number of each):
Other: ______________________________________

Received: 2012-04-30

Comments:

Signed: ______________________

Date: 2012-07-03
Seventh Year Assessment Report

for

Mineral Exploration Licence # 10375M,
Wild Cove Prospect, Corner Brook area,
NTS 12A/13, Newfoundland

by

Jamie Meyer, PGeo

For

Gerald Baker
(licence holder)

Work conducted: Jan 2010 to Nov 2011
Expenditures: $23,962.78
Claims: 20

March 2012

SUBMITTED BY:

Jamie Meyer, PGeo
36 Birchview Drive
Pasadena, NL
A0L 1K0
Tel: 709-686-2874
jamiemeyer@nl.rogers.com
TABLE OF CONTENTS

TABLE OF CONTENTS ... i

LIST OF FIGURES ... ii

LIST OF PLATES ... iii

INTRODUCTION ... 1

LOCATION, ACCESS AND PHYSIOGRAPHY .. 2

GEOLOGICAL SETTING .. 4

PREVIOUS GEOLOGICAL WORK .. 7

2011 FIELD WORK ... 8

RESULTS OF THE 2011 FIELD WORK .. 9

TEST RESULTS ... 12

SUMMARY AND RECOMMENDATIONS .. 18

REFERENCES ... 19

STATEMENT OF QUALIFICATIONS ... 21

APPENDIX “A” – Licence # 10375M - Assessment Expenditures

APPENDIX “B” – Letter of results from work carried out by Stantec Consulting Ltd.

APPENDIX “C” - ICP Whole Rock Fusion Certificate from Eastern Analytical Ltd.

APPENDIX “D” - Outcrop descriptions and photographs from the sample sites.
INTRODUCTION

The mineral exploration license # 10375M is located in Western Newfoundland near the city of Corner Brook. The licence is underlain by recrystallized limestone and is referred to as the “Wild Cove Marble Property”. It consists of 20 claims, and encompasses an area of close to 4.5 km2. The claims were staked by Mr. Gerald Baker in 2004, after an investigation of the potential to ship aggregate into markets in the United States. At the time Mr. Baker owned Humber Valley Paving, and the company operated a large aggregate quarry adjacent to this exploration licence. The company was later sold, but Mr. Baker has maintained exploration licence 10375M, as well as an interest in offshore aggregate markets.

The city of Corner Brook is dominated by the Corner Brook Pulp and Paper Limited (CBPPL) paper mill. However, there have been many industries in the city that are/were based on local stone resources, including a cement plant (now closed), a ready-mix concrete plant, a cement block and patio stone manufacturer, and numerous aggregate quarries and asphalt plants.

The quarries that once supplied stone to the cement plant now produce aggregate and occasionally armour stone. Both of these products have been shipped by boat from the main wharf in Corner Brook in the past, loaded by clamshell and crane. But the recent development and cleaning up of the city’s waterfront make it unlikely that it will happen again. The waterfront was used to ship containers until recently and it is also used as a ferry and cruise boat terminal. Thus if there were to be any development of bulk shipping terminals in the future for commodities such as aggregate, they would likely have to be located in other parts of the Humber Arm.

LOCATION, ACCESS AND PHYSIOGRAPHY

Mineral exploration License # 10375M forms a rectangular block ~ 2 km (east-west) by 2.5 km (north-south), and is located at the eastern end of the Humber Arm, 1 to 2 km NE of Corner Brook, (Figure 1). The Humber Arm is a navigable body of water that is open to the Gulf of St. Lawrence, and is kept open for commercial shipping 12 months a year. This exploration licence borders tidewater on its western and southern sides, and the Hughes Brook estuary on its northwestern side. Its southeastern corner it is cut by a secondary paved highway, Route 440 (North Shore Highway), which connects to the Trans Canada Highway, approximately 2 km to the south. The eastern edge of the claim boundary overlaps a Fee Simple Mineral Licence held by CBPPL. This historical licence has a boundary (impost boundary on Figure 1) that does not exactly follow the present day UTM grid lines. Thus the boundary of Licence 10375M is the actual CBPPL impost boundary, (as long as CBPPL hold the Fee Simple Mineral Licence). Each of the 5 claims along this boundary are less than the typical 25 hectares/claim (i.e. the
claim in the SE corner is approximately 12 to 14 hectares).

Figure 1. Location of the mineral exploration license # 10375M, within the 1:50,000 Corner Brook map
This mineral exploration licence covers a large hill with a maximum elevation of 271 metres, and having very steep slopes/cliffs on its north and west sides. The south-southeastern side of the hill is moderately steep, but steepens towards the northeastern side. The east side of the mineral exploration licence has good road access via a gravel road that runs parallel to the CBPPL licence boundary, (on their side of it). This road is used by trucks going to the Baker’s Brook aggregate quarry and asphalt plant owned by Humber Valley Paving (HVP), and operating on land leased from CBPPL. The road is kept open until late December, and then closes for the winter. There is poorly maintained dirt road which leads from the HVP road, up to a communication tower on top of the hill. There are several ATV and snowmobile trails that cut across the property from the communication tower ‘road’. A ‘well cleared’ hydro line cuts diagonally across the hill, southeast to northwest, and it was used for access by foot when sampling marble during this program.

Plate 2. Composite photo of Wild Cove Marble Property, taken from the TCH on the north side of Corner Brook, looking NNE across Humber Arm. Route 440 visible on extreme right (east), and the dirt road leading up to HVP stone quarry is immediately to the left (west) of it. The power line can just be seen crossing diagonally from the right (southeast) to the left (northwest) across the south side of the hill.

The licence area was logged many years ago, but the forest cover has completely regenerated with a mixture of fir and hardwood. There are many springs and wet areas on the hillside. Outcrop is relatively sparse (5 to 10%?), with a few good exposures along scarp faces. The north and northwest side of the hill have cliff faces that expose considerable bedrock, but it is very fractured due to faulting. There are good outcrops exposed along the much of the coastline, but marine mud/clay covers the bedrock along the southeastern coastline.

GEOLOGICAL SETTING
Western Newfoundland is underlain by the **Humber Zone** (Figure 2), consisting of a lower Paleozoic miogeoclinal carbonate platform, which was deposited on a Grenvillian crystalline ‘basement’, (Williams et al, 1988). The carbonate platform and related (time equivalent) deepwater sediments, were deposited along the trailing edge of North America during the opening of the Iapetus (proto-Atlantic) Ocean. The Bay of Islands Ophiolite Complex and the foreland basin sediments (Humber Arm Allochthon) were emplaced from east to west upon the autochthonous carbonate terrane during the Taconian (middle
The Humber Arm allochthon is dominated by fine grained sediments, interbedded shales and siltstones, with lesser coarse quartz-rich clastics. The northwest corner of this exploration licence is underlain by fine grained marine sediments of the Curling Group, a part of the Humber Arm Allochthon. The Hughes Brook Fault strikes NE-SW across the NW corner of the licence, and separates these sediments in the west, from the Carbonate terrane to the east (Figure 3).

Figure 3. Geology of the Wild Cove Marble Property, after Knight Map 95-20 A.

The Wild Cove Marble Property is predominantly underlain by a sequence of formations that are a part of the western Newfoundland Carbonate Terrane. Recrystallized limestone, dolostone, and fine grained sediments of the Cambrian aged Port au Port Group are overlain by the Ordovician St. George and Table
Head Groups. This sequence is deformed in a complex foreland fold-and-thrust belt (Knight, 1995). Generalized descriptions of the rock formations exposed on this licence, are taken from Knight (2003), who describes them from fieldwork carried out in the North Brook anticline, which is located southwest of Corner Brook.

The Upper Cambrian Port au Port Group consists of the Petit Jardin Formation, which is overlain by the Berry Head Formation. The Petit Jardin Fm, consisting of ribbon limestones, dolostones and minor shales. The Berry Head Fm consists of a basal cherty dolostone member, a middle thick-bedded dolostone member, and a mixed limestone and dolostone upper member.

The Lower Ordovician St. George Group has three formations. The oldest formation is the Watts Bight Fm, which consists of dolomitic limestone interbedded with dololaminate; black chert is common throughout, in the area of the North Brook anticline. The overlying Boat Harbour Fm has a basal dolostone unit, which is overlain by cyclic dolomitic limestone and laminated limestone that becomes shaley at the top. The upper Catoche Fm is dominated by dark grey limestones with occasional dolomitic zones.

The Middle to late Ordovician is represented by the Table Head and Goose Tickle Groups in this area. The Table Point Fm is the only representative of the Table Head Group, and consists of well bedded, dark grey dolomitic limestone. Siliciclastic flysch of the American Tickle Fm represents the Goose Tickle Fm and signals the early stages of the Taconian orogeny (Knight, 2003).

The limestone and dolostone units in this licence area are moderately to strongly recrystallized to marble, the shale is moderately metamorphosed to slate, and the flysch of the American Tickle Fm is metamorphosed to phyllite.

PREVIOUS GEOLOGICAL WORK

Geological mapping has been carried out in the areas adjacent to the mineral exploration licence 10375M by provincial and federal government geologists. The most detailed work has been by Dr. Ian Knight (1992, 1994, 1995, 1997, 2003). The Geological Survey of Canada funded a geological map and report produced by Cawood and van Gool (1994, 1998), that covered an area that included Steady Brook to Grand Lake, south of Corner Brook lake, and west to Hughes Brook, including this licence area.

Extensive exploration for base metals has been carried out in the adjacent Humber River Fee Simple Mineral Property belonging to CBPPL. This work was stimulated by the success of the Newfoundland Zinc Mine at Daniel’s Harbour in the 1980’s. Many significant discoveries have been made, but no
significant tonnages have been proven. A good description of the style of mineralization being explored for was been written by Knight (1984). Extensive work has been carried out exploring for marble dimension stone deposits on the west side of Deer Lake, at Pye’s Ridge (Knight, 1992). This work led to exploration in the Corner Brook area and including limited work being carried out on CBPPL’s property.

More recently, exploration work has been carried out on licence 10375M by Rod Mercer, focusing on the industrial mineral potential (Mercer, 2002, 2005, 2007). In 2002 a single sample was collected from the proposed licence area, analyzed and tested, and found to be “the same” as the ‘limestone’ from the Baker’s Brook quarry. In 2005, two ‘limestone’ samples were collected from communication tower access road for aggregate testing and geochemical analysis, to assess a variety of industrial mineral end uses. In this report conceptual drawings were presented for a proposed docking and loading facility targeting the export of ‘limestone’ aggregate. Fieldwork carried in 2006 consisted of bedrock sampling at two sites on the top of the main hill, and at a third site near the northern boundary of the claim, and close to the Hughes Brook fault (Mercer, 2007). The three samples were combined for aggregate testing by AMEC. A single LA Abrasion test (ASTM C-131, C-535) was carried out, and showed a loss of 47%, which was surprisingly high. The Mercer report suggested that surface weathering may have played a part in this high loss, (and perhaps one sample was lower quality, being taken too close to the Hughes Brook Fault). A petrographic analysis was carried out as part of that study, using a representative sample from the test fraction (“gravel #4 to 5.08 mm”) from the LA Abrasion work. This resulted in a petrographic number of 126.2, which is consistent with other analyses carried out on “rocks from this site”.

2008 – 2009 FIELD WORK

Fieldwork carried out in 2008-2009 by Meyer (2010) located many new areas of outcrop. Samples were collected from most of the geological units mapped by Knight (Map 95-20), which outcrop across the central and eastern half of the property (Figure 4), giving a good overview of the potential of the claims. Sampling was carried out using sledgehammers and wedges to obtain fresh rock at more than a dozen different sites. Samples were combined from several different sites within the same geological units, to give sufficient bulk for aggregate testing of each geological unit. Stantec Consulting in St. John’s carried out this work. Results indicated that each of the geological formations tested are suitable for aggregate production for most, if not all industrial applications. Geochemical analysis of the samples showed that a couple of the formations were up to 95.89 % CaCO3, suggesting additional potential for a variety of industrial applications where high calcium content is critical. In addition, at many sampled sites, large enough samples were taken for an initial assessment of the dimension stone potential, as most of the carbonate units on the property are moderately recrystallized and can indeed be classified as ‘marble’. However there were no dynamic colours or textures in this area, and the potential is likely quite limited.
RESULTS OF THE 2010 – 2011 FIELDWORK

Initial fieldwork was carried out in the spring of 2011 and detailed in a report which was submitted as work requirements for Quarry Material Exploration Licence 705:1070 (Meyer, 2011). The remainder of the fieldwork was carried out in the fall of 2011. The fall work program focused on the western portion of the claim block, see Figure 4). This part of the property is closer to tidewater, where a potential aggregate quarry might be established in closer proximity to a future loading facility for transport by boat for export markets.

Figure 4. Sample site locations for 2011 fieldwork carried out on the Wild Cove Marble Property, Exploration Licence 10375M.
The initial two sampled areas, GB-11-01 and 02 (Figure 4) were carried out by foot traverse, walking in from the north shore highway and following northeast along the transmission line. The sample sites are situated on moderately steep west-facing hillside (Plate 3). Both sites consisted of dolomitic marble interbedded with lesser calcitic marble.

Plate 3. Photograph showing the western half of Licence 10375M, and the coastline which was sampled in the fall of 2011. Sites GB-11-01 and 02 are located halfway up the west facing hillside and were accessed by foot, traversing from the transmission line which cuts through the property.

Sampling along the coastline was done by boat, and this includes sites GB-11-03 to 07. The western most sample site GB-11-03 shows on Figure 4 to be located within the Curling Group, but it actually is located within black marbles of the Table Head Formation, 80 to 100 m east of the major thrust fault. Sample sites GB-11-06 and 05 are located to the east of 03, also within bioturbated grey to black marbles of the Table Point Formation. Outcrops at GB-11-04 consist of grey dolomitic marble, but still within the Table Point formation.
Plate 4. Typical coastline outcrops at GB-11-04, showing medium to thick interbedded dolomitic and calcitic marbles, which strike 050 to 070 and dip 20 to 35 degrees S-SE

TEST RESULTS.

(1) Aggregate:
There were 7 samples sent to Stantec Consulting Ltd. in St. John’s for standard aggregate testing, which included:

1) Relative density and absorption of coarse aggregate in accordance with ASTM C 127
2) LA Abrasion testing in accordance with ASTM C535
3) Micor-Deval testing of coarse aggregate in accordance with CSA-A23.3-29A.

The Los Angeles (L.A.) Abrasion Test; ASTM C535, is a dry test used to determine toughness and abrasion characteristics of coarse aggregate. A high quality aggregate must be able to stand up to the “wear and tear” of the manufacturing process, as well as the effects of transportation and repeated
stockpiling. The standard L.A. abrasion test subjects a coarse aggregate sample to abrasion, impact, and grinding in a rotating steel drum containing a specified number of steel spheres. Aggregate abrasion characteristics are determined by the weight of fines created, relative the original weight of the coarse aggregate sample, and expressed as a percentage. An average percentage of loss for typical lithologies undergoing LA Abrasion testing, is presented below in Table 1.

Table 1: Typical LA Abrasion values for various lithologies. Taken from “Pavement Interactive”, 2007.

<table>
<thead>
<tr>
<th>Rock Type</th>
<th>L.A. Abrasion Loss (by percent weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Values</td>
<td></td>
</tr>
<tr>
<td>Hard, igneous rocks</td>
<td>10</td>
</tr>
<tr>
<td>Soft limestones and sandstones</td>
<td>60</td>
</tr>
<tr>
<td>Ranges for specific rocks</td>
<td></td>
</tr>
<tr>
<td>Basalt</td>
<td>10 – 17</td>
</tr>
<tr>
<td>Dolomite</td>
<td>18 – 30</td>
</tr>
<tr>
<td>Gneiss</td>
<td>33 – 57</td>
</tr>
<tr>
<td>Granite</td>
<td>27 – 49</td>
</tr>
<tr>
<td>Limestone</td>
<td>19 – 30</td>
</tr>
<tr>
<td>Quartzite</td>
<td>20 – 35</td>
</tr>
</tbody>
</table>

The second abrasion test carried out on the samples is called the “Micro-Deval Abrasion Testing of Coarse Aggregate, CSA A23.2-29A. The Mico-Deval test was first used in France, and then modified for use in Canada by the Ontario Ministry of Transport. It is a wet test and is thought by some to be a better measure of an aggregate’s ability to withstand “service” (abrasion, impact, and other stresses) during exposure to more typical moisture and weather conditions, especially during the production of concrete and hot asphalt mix (HMA). A Micro-Deval test is sometimes carried out on the fine aggregate fraction as well, especially when being evaluated for use in concrete. It is noteworthy that the micro-deval test is considered by some ‘experts’ to be a suitable replacement for the Sodium Sulfate test, which would be a great time saver. However, it is more than likely that this test to be added to (rather than replace) the various required evaluation tests of an aggregate’s quality. A table of specifications from the Ontario Ministry of Transport is given below, for the maximum loss during micro-deval testing of coarse aggregate.
Table 2: Micro-deval Specifications for Coarse Aggregate in Ontario. (From: Rodgers, 1998).

<table>
<thead>
<tr>
<th>Application</th>
<th>Maximum Loss (by percent weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granular Sub-base</td>
<td>30</td>
</tr>
<tr>
<td>Granular base</td>
<td>25</td>
</tr>
<tr>
<td>Open graded base course</td>
<td>17</td>
</tr>
<tr>
<td>Bituminous wearing courses</td>
<td></td>
</tr>
<tr>
<td>- Premium</td>
<td>5–15*</td>
</tr>
<tr>
<td>- Secondary</td>
<td>17</td>
</tr>
<tr>
<td>Bituminous base courses</td>
<td>23</td>
</tr>
<tr>
<td>Structural Concrete</td>
<td>17</td>
</tr>
<tr>
<td>Concrete Pavement</td>
<td>13</td>
</tr>
</tbody>
</table>

* Varies with rock type; 5% for igneous and metamorphic gravel, 10% for traprock and diabase, and 15% for dolomitic sandstone, granitic arkose, and gneiss.

The results from Stantec Consulting Limited for the samples taken in 2011 from licence 10375M are given below in Table 3. In a comparison with the a) typical values for LA Abrasion, and b) specifications

Table 3. Results from the aggregate testing work carried out by Stantec Consulting in St. John’s.

<table>
<thead>
<tr>
<th>TEST PROCEDURE</th>
<th>GB-11-01</th>
<th>GB-11-02</th>
<th>GB-11-03</th>
<th>GB-11-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA Abrasion Test</td>
<td>23.5 %</td>
<td>20.8 %</td>
<td>26.0 %</td>
<td>23.5 %</td>
</tr>
<tr>
<td>ASTM C535</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mico-Deval Abrasion Testing of</td>
<td>9.2 %</td>
<td>7.3 %</td>
<td>12.8%</td>
<td>7.7 %</td>
</tr>
<tr>
<td>Coarse Aggregates ; CSA A23.3-29A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative Density</td>
<td>Bulk = 2.741</td>
<td>Bulk = 2.785</td>
<td>Bulk = 2.723</td>
<td>Bulk = 2.753</td>
</tr>
<tr>
<td>& Absorption of Coarse</td>
<td>Bulk SSD = 2.751</td>
<td>Bulk SSD = 2.795</td>
<td>Bulk SSD = 2.732</td>
<td>Bulk SSD = 2.761</td>
</tr>
<tr>
<td>Aggregate; ASTM C127</td>
<td>Apparent = 2.768</td>
<td>Apparent = 2.815</td>
<td>Apparent = 2.746</td>
<td>Apparent = 2.746</td>
</tr>
<tr>
<td>Absorption = 0.4%</td>
<td>Absorption = 0.4%</td>
<td>Absorption = 0.3%</td>
<td>Absorption = 0.3%</td>
<td>Absorption = 0.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST PROCEDURE</th>
<th>GB-11-05</th>
<th>GB-11-06</th>
<th>GB-11-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA Abrasion Test</td>
<td>23.6 %</td>
<td>21.2 %</td>
<td>Insufficient sample material</td>
</tr>
<tr>
<td>ASTM C535</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mico-Deval Abrasion Testing of</td>
<td>10.6 %</td>
<td>10.4 %</td>
<td>10.7%</td>
</tr>
<tr>
<td>Coarse Aggregates ; CSA A23.3-29A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative Density</td>
<td>Bulk = 2.738</td>
<td>Bulk = 2.737</td>
<td>Bulk = 2.741</td>
</tr>
<tr>
<td>& Absorption of Coarse</td>
<td>Bulk SSD = 2.748</td>
<td>Bulk SSD = 2.746</td>
<td>Bulk SSD = 2.756</td>
</tr>
<tr>
<td>Aggregate; ASTM C127</td>
<td>Apparent = 2.766</td>
<td>Apparent = 2.764</td>
<td>Apparent = 2.781</td>
</tr>
<tr>
<td>Absorption = 0.4%</td>
<td>Absorption = 0.4%</td>
<td>Absorption = 0.4%</td>
<td>Absorption = 0.5%</td>
</tr>
</tbody>
</table>

from other jurisdictions which are given above for Micro-Deval results, it can be stated that the formations sampled from Licence 10375 are indeed suitable for aggregate production for most, if not all
applications. It would however, still be recommended that additional testing of these formations be carried out, i.e. drilling, before proceeding with the opening of a quarry. [This assumes that all other issues were addressed, i.e environmental, municipal, economics, etc.]

(2) Geochemical Results:

Geochemical analyses are presented in Table 4 for most of the sampled sites in the 2011 program. The analyses below are reported in weight percent of oxide constituents. To calculate the actual carbonate percentage, the following formula is used:

1% CaO is equivalent to 1.78% CaCO₃
1% MgO is equivalent to 2.09% MgCO₃ (from DeGrace, 1974).

Limestones/marbles with 97 to 99 per cent CaCO₃ are considered high calcium stone. The premium limestone flux sold by Atlantic Minerals Ltd from Lower Cove is 97.95 CaCO₃.

Table 4. Geochemical Analyses for 2011 Marble Sampling on Wild Cove Marble Property

<table>
<thead>
<tr>
<th>SAMPLE SITE</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>LOI%</th>
<th>Sum</th>
<th>TOT/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB-11-01</td>
<td>2.68</td>
<td>0.39</td>
<td>0.11</td>
<td>7.26</td>
<td>45.25</td>
<td>0.15</td>
<td>0.14</td>
<td>43.9</td>
<td>99.90</td>
<td>12.60</td>
</tr>
<tr>
<td>GB-11-02</td>
<td>4.41</td>
<td>0.58</td>
<td>0.25</td>
<td>9.53</td>
<td>41.01</td>
<td>0.39</td>
<td>0.22</td>
<td>43.4</td>
<td>99.86</td>
<td>12.39</td>
</tr>
<tr>
<td>GB-11-03</td>
<td>7.56</td>
<td>1.26</td>
<td>0.57</td>
<td>17.71</td>
<td>28.23</td>
<td>0.21</td>
<td>0.67</td>
<td>43.4</td>
<td>99.69</td>
<td>12.24</td>
</tr>
<tr>
<td>GB-11-04</td>
<td>3.31</td>
<td>0.91</td>
<td>0.35</td>
<td>5.11</td>
<td>46.55</td>
<td>0.25</td>
<td>0.15</td>
<td>43.1</td>
<td>99.88</td>
<td>12.26</td>
</tr>
<tr>
<td>GB-11-05</td>
<td>2.46</td>
<td>0.57</td>
<td>0.25</td>
<td>13.41</td>
<td>37.64</td>
<td>0.20</td>
<td>0.19</td>
<td>45.0</td>
<td>99.79</td>
<td>12.90</td>
</tr>
<tr>
<td>GB-11-06</td>
<td>5.86</td>
<td>1.42</td>
<td>0.64</td>
<td>8.35</td>
<td>40.98</td>
<td>0.31</td>
<td>0.25</td>
<td>41.9</td>
<td>99.85</td>
<td>12.00</td>
</tr>
<tr>
<td>GB-11-07</td>
<td>8.48</td>
<td>2.12</td>
<td>0.76</td>
<td>8.01</td>
<td>38.95</td>
<td>0.33</td>
<td>0.40</td>
<td>40.6</td>
<td>99.86</td>
<td>11.51</td>
</tr>
</tbody>
</table>

(3) Dimension Stone:

The dimension stone qualities of various marbles from the licence area were briefly assessed during the 2011 work program. Slabs of marble were cut from samples taken at from numerous sites on the property. As these were surface samples, they required resin treatment for stabilizing cracks and bad seams, before being ground smooth and polished. This work was carried out at Meyer’s Minerals in Pasadena.
From an aesthetic perspective and marketability of the marbles sampled, there are no dynamic or unique colours and/or textures in the samples collected in the 2011 program. The colours are dominantly charcoal to black in colour, with a few samples having various tones of light and dark grey.

SUMMARY AND RECOMMENDATIONS

The 2011 field program and follow-up testing work indicates that the stone from several of the formations underlying the licence area have good potential for the production of aggregate. There is always additional sampling work that could be carried out to test additional outcrops. However, discussions should be held with the Corner Brook Municipal government before committing too much funding to a large scale aggregate export project. It is not known what the views of the city would be towards such a venture operating within their boundaries. If the blessing of the city officials was forthcoming, a small drilling program would be recommended to provide a complete geological understanding of a selected site. The currently operating Bakers Brook quarry indicates that the recrystallized limestone/marble in the Watts Bight Fm is of suitable quality and the sampling work in 2011 again confirms that the quality is continuous on to Licence 10375M.

The dimension stone potential of the marbles in this area have limited potential. Trial quarrying on a very small scale could give larger samples to test market in the local area initially. Small marketing programs could provide better economic values of certain colours and textures of the various marbles.
References

Cawood, P.A. and van Gool, J.A.M.

Cawood, P.A. and van Gool, J.A.M.
1998: Geology of the Corner Brook Lake- Glover Island region , Newfoundland. Geological Survey of Canada Bulletin 427, including two maps at 1:50,000 scale, 96 pages (NFLD 2649)

DeGrace, John R.

Hayes, J.P. (compiler)
1987: Geology of Newfoundland. Newfoundland Department of Mines and Energy, Mineral Development Division, unpublished map, 1:3,125,000 scale.

Hoffman, Celeste
2007: Los Angeles Abrasion. Taken from online article in “Pavement Interactive”. This web page was last modified December 2007 by Celeste Hoffman.
http://pavementinteractive.org/index.php?title=Los_Angeles_Abrasion

Knight, I.,

Knight, I.

Knight, I.

Knight, I.

Knight, I.
Knight, I.
1996. Geological map of parts of the Little Grand Lake (NTS 12A/12), Corner Brook (12A/13), George’s Lake (12B/9) and Harry’s River (12B/16 map areas. Newfoundland Department of Mines and Energy, Map 95-20, scale 1:50,000. (NFLD 2604)

Knight, I.

Knight, I.

Meininger, Richard

Mercer, R.P.

Mercer, R.P.

Mercer, R.P.

Rodgers, Chris

Williams, H., Colman-Sadd, S.P., and Swinden, H.S.,
Statement of Qualifications

Jamie Meyer BSc., P.Geo.
36 Birchview Drive
Pasadena, Newfoundland
A0L 1K0
Tel: 709-686-2874 (Home/Office) / - 2026 (Shop)
Fax: 709-686-2317
meyer.dunsworth@nf.sympatico.ca

I, Jamie Meyer, B.Sc., P.Geo., Consulting Geologist, hereby certify that:

- I graduated with a B.Sc. - Geology from University of Alberta in 1981.
- I am a registered Professional Geologist (Member No.: 02471) in good standing with the Association of Professional Engineers and Geoscientists of Newfoundland (APEGN) and Meyer Dunsworth Enterprises Ltd. is registered with and holds a 2009 Permit to Practice with APEGN.
- I have practiced my profession as a mineral exploration geologist continuously since 1981 to the present date.

Jamie Meyer, B.Sc., P.Geo.

DATED at Pasadena, Newfoundland this 17th day of May 2012
APPENDIX “A”

SEVENTH YEAR ASSESSMENT EXPENDITURES for Exploration Licence 10375M

1) Geological mapping and sample collecting – J. Meyer, P.Geo. & assistant
 11 day @ 650.00/day .. $ 7,150.00

2) Geological mapping and sample collecting – J. Meyer, PGeo
 5 day @ 500.00/day ... $2,500.00

3) Truck rental for field work –
 15 days @ $50/day ... $ 750.00

3) ATV rental for sample collecting
 3 days at $60/day ... $ 180.00

4) Engineering tests on coarse aggregate by Stantec Consulting Ltd., St. John’s
 Relative Density & Absorption, LA Abrasion, Micro-Devalon …… $3,000.00

5) Eastern Analytical Limited, Springdale
 Sample prep and whole rock analyses on 7 samples @ 40.00/sample $ 280.00

6) S. & T. Lapidary Services, St. John’s
 Preparation of thin sections – 8 samples @ $15/sample …….. $ 120.00

7) Cutting and polishing of rock samples - Meyer’s Minerals, Pasadena
 3 large @ $45, 9 med @ 35.00/ sample, 6 sm samples @ $25/sample........ $ 600.00

8) Map compilation/preparation – Spatial Data Management, St. John’s
 6 hours @ $60/hr ... $ 360.00

9) Sample preparation for Stantec, Eastern Analytical, S & T Lapidary,
 and final report preparation – J. Meyer, P.Geo. - 7 day @ 500.00/day …… $3,500.00

Sub Total .. $ 18,440.00

HST @ 13% $ 2,397.20

TOTAL $ 20,837.20

15% Overhead for Licence Holder .. $ 3,125.58

TOTAL $23,962.78
APPENDIX “B”
Letter of results from work carried out by Stantec Consulting Ltd

Stantec Consulting Limited
507 Torbay Road
St. John’s, NL A1A 4Y6
Tel: (709) 576-1458
Fax: (709) 576-2126

April 9, 2012
File: 121614061

Meyer Dunsworth Geological Consulting
36 Birchview Drive
Pasadena, NL
A0L 1K0

Attention: Mr. Jamie Meyer

Dear Mr. Meyer:

Re: Quality Control Services – Aggregate Acceptance Testing, 2012 Program, Pasadena, NL

As requested, laboratory testing has been completed on the seven samples submitted to our office on March 22, 2012. It is understood the samples were obtained from outcrops of recrystallized limestone/marble.

The following testing was completed in our laboratory in accordance with our ISO Standard Operating procedures and in conformance with the applicable ASTM Standards.

1) Relative Density & Absorption of Coarse Aggregate in accordance with ASTM C 127;
2) LA Abrasion testing in accordance with ASTM C535;
3) Micro-Deval Testing of Coarse Aggregate in accordance with CSA-A23.2-29A;

The test results are summarized on the enclosed Table A.

We trust this meets your present requirements. If you have any questions or require any additional information, please call me at your convenience.

Yours truly,

STANTEC CONSULTING LTD.

Perry G. Dalton, P. Tech
Materials Engineering Group Supervisor

Attachments: Table A: Aggregate Acceptance Testing Summary Table
STANTEC CONSULTING LTD

AGGREGATE ACCEPTANCE TESTING
QUALITY CONTROL SERVICES - 2012 PROGRAM, MEYER DUNSWORTH

Table A

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Los Angeles Abrasion ASTM C131</th>
<th>Relative Density & Absorption of Coarse Aggregate ASTM C127</th>
<th>Coarse Micro Deval CSA A23.2 29A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bulk Rock #1</td>
<td>Bulk</td>
<td>Bulk (SSD)</td>
</tr>
<tr>
<td></td>
<td>23.5%</td>
<td>2.741</td>
<td>2.751</td>
</tr>
<tr>
<td></td>
<td>Bulk Rock #2</td>
<td>20.8%</td>
<td>2.785</td>
</tr>
<tr>
<td></td>
<td>Bulk Rock #3</td>
<td>26.0%</td>
<td>2.723</td>
</tr>
<tr>
<td></td>
<td>Bulk Rock #4</td>
<td>23.5%</td>
<td>2.753</td>
</tr>
<tr>
<td></td>
<td>Bulk Rock #5</td>
<td>23.6%</td>
<td>2.738</td>
</tr>
<tr>
<td></td>
<td>Bulk Rock #6</td>
<td>21.2%</td>
<td>2.737</td>
</tr>
<tr>
<td></td>
<td>Bulk Rock #7</td>
<td>*</td>
<td>2.741</td>
</tr>
</tbody>
</table>

* Not enough sample to complete the test; Testing completed on April 5, 2012.
Appendix C

ICP Whole Rock Fusion Certificate from Eastern Analytical Ltd

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>SiO2 %</th>
<th>Al2O3 %</th>
<th>Fe2O3 %</th>
<th>MgO %</th>
<th>CaO %</th>
<th>Na2O %</th>
<th>K2O %</th>
<th>TiO2 %</th>
<th>P2O5 %</th>
<th>FeO %</th>
<th>MnO %</th>
<th>MgCO3 %</th>
<th>CaCO3 %</th>
<th>SiO2 % PPM</th>
<th>P2O5 % PPM</th>
<th>FeO % PPM</th>
<th>MnO % PPM</th>
<th>MgCO3 % PPM</th>
<th>CaCO3 % PPM</th>
<th>Totals %</th>
<th>Totals PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2970</td>
<td>2.65</td>
<td>0.38</td>
<td>0.11</td>
<td>7.26</td>
<td>65.25</td>
<td>0.15</td>
<td>0.14</td>
<td>0.02</td>
<td><0.01</td>
<td><0.01</td>
<td><0.02</td>
<td>31</td>
<td>232</td>
<td><5</td>
<td><5</td>
<td><1</td>
<td>42.9</td>
<td>99.89</td>
<td>12.60</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>2971</td>
<td>4.41</td>
<td>0.38</td>
<td>0.25</td>
<td>0.53</td>
<td>41.01</td>
<td>0.29</td>
<td>0.22</td>
<td>0.02</td>
<td><0.01</td>
<td><0.01</td>
<td><0.02</td>
<td>19</td>
<td>263</td>
<td><5</td>
<td><5</td>
<td><1</td>
<td>42.4</td>
<td>99.86</td>
<td>12.39</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>2972</td>
<td>7.85</td>
<td>1.26</td>
<td>0.17</td>
<td>17.71</td>
<td>28.23</td>
<td>0.21</td>
<td>0.97</td>
<td>0.02</td>
<td><0.01</td>
<td><0.01</td>
<td><0.02</td>
<td>43</td>
<td>186</td>
<td><5</td>
<td><5</td>
<td><1</td>
<td>43.4</td>
<td>99.69</td>
<td>12.24</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>2973</td>
<td>3.31</td>
<td>0.91</td>
<td>0.15</td>
<td>5.11</td>
<td>48.55</td>
<td>0.25</td>
<td>0.15</td>
<td>0.04</td>
<td><0.01</td>
<td><0.01</td>
<td><0.02</td>
<td>36</td>
<td>497</td>
<td><5</td>
<td><5</td>
<td><1</td>
<td>43.1</td>
<td>99.88</td>
<td>12.28</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>2974</td>
<td>2.49</td>
<td>0.57</td>
<td>0.29</td>
<td>13.41</td>
<td>37.04</td>
<td>0.20</td>
<td>0.19</td>
<td>0.02</td>
<td><0.01</td>
<td><0.01</td>
<td><0.02</td>
<td>11</td>
<td>214</td>
<td><5</td>
<td><5</td>
<td><1</td>
<td>40.0</td>
<td>95.79</td>
<td>12.90</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>2975</td>
<td>3.85</td>
<td>1.42</td>
<td>0.84</td>
<td>6.35</td>
<td>60.98</td>
<td>0.31</td>
<td>0.25</td>
<td>0.06</td>
<td><0.01</td>
<td>0.01</td>
<td><0.02</td>
<td>23</td>
<td>412</td>
<td>13</td>
<td>4</td>
<td>1</td>
<td>41.9</td>
<td>98.85</td>
<td>12.00</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>2976</td>
<td>4.48</td>
<td>2.12</td>
<td>0.76</td>
<td>8.01</td>
<td>36.95</td>
<td>0.33</td>
<td>0.40</td>
<td>0.09</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>47</td>
<td>460</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>40.6</td>
<td>99.86</td>
<td>11.51</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D

Outcrop descriptions and photographs

GB-11-01: 434068E 5425461N Elevation ~ 131m 065/10-15 E

Medium grey, fine grained dolomitic marble, exposed in ledges up to 1 m thick. Very fine 1-2 mm laminations visible in much of outcrop. White calcitic veining common,

GB-11-01: a 1m ledge of dolomitic marble, with close-up (right) showing fracture/cleavage approx. perpendicular to bedding

Dark grey calcitic marble outcropping in a <1m high ledge, ~ 10m stratigraphically below dolomitic marble shown above
GB-11-02: 434195E 5424858N Elevation ~ 71m 165/30 SW

Dolomitic and calcitic limestone, recrystallized to fine grained marble. Beds up to 50 cm, but more typically thinly interbedded calcitic and dolomitic beds 1-3cm thick. Zones with closely spaced, recrystallized quartz veins which are 1-15 mm wide and irregular in orientation. Jointing medium strong and perpendicular to bedding. The outcrop shown is overlain by grey, massive, medium crystalline calcitic marble in beds 30 to 50 cm thick.

GB-11-03 433541 E 5425373 N @ sea level 155 / 50E

Sampling over zone located 80 to 100 m SE of fault, (extreme left side of photo below) even though it plots on map(Fig 4) as being west of fault. Thick bedded, black, bioturbated recrystallized calcitic limestone. Zones with white calcite veins common proximal to fault, as well as white veins with breccias.
GB-11-04 433960 E 5424798 N @ sea level 140 / 30 W

Very thick bedded, medium grey, fine crystalline dolomitic marble, underlain by 75+ cm unit of dark grey calcitic marble. Moving along shoreline outcrop in an easterly direction, the unit gently folds such that the outcrop is 050 / 35 E. The unit is faulted at approx 150 m east of the sample site.
Grey to black bioturbated arble, with beds 30 cm to 1 m. Walking along shoreline to west there are minor dolomitic beds up to 15 cm thick, and occasional shale lambs/splits within the bioturbated limestone. There is a gentle fold approximately 100 m to the west.

GB-11-06 433707 E 5425160 N @ sea level 115 / 10-15 W

Thick bedded bioturbated dark grey to black marble with cross-cutting white calcite veins 1-2mm thick. Becomes less black, more grey in colour to the east, and bedding becomes thinner.