<table>
<thead>
<tr>
<th>License/Property</th>
<th>No. of Claims</th>
<th>Assessment Year</th>
<th>Date Issued</th>
<th>NTS Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>18482M</td>
<td>24</td>
<td>1</td>
<td>2011-02-07</td>
<td>13A/10</td>
</tr>
<tr>
<td>19890M</td>
<td>2</td>
<td>1</td>
<td>2012-02-20</td>
<td>12A/10</td>
</tr>
</tbody>
</table>

Continued next page [No]

Number of Volumes: ______________

Digital Copy Only [✓]

Enclosures (indicate number of each):

Other: __

Received: 2012-02-24
Comments: Forwarded to first floor 2012-03-02

Signed: ____________________________

Date: 2012-03-02
YEAR 1 ASSESSMENT GEOLOGY REPORT

ON THE ALEXIS RIVER PROPERTY
(Evaluation of Ti potential)

PORT HOPE SIMPSON AREA
SOUTH EASTERN LABRADOR

LICENSES 018482M (24 Claims) & 019890M (2 Claims)

LOCATION

NTS MAP 013A/10

UTM COORDINATES
NAD 27, ZONE 21

5 842 000 N, 505 000 E;
(Northeast Corner of license 018482M

Prepared for: KAL MALHI.

24 February 2012
Table of Contents

Summary ... 1
Introduction 2
Disclaimer .. 2
Property Location and Description 2
Accessibility, infrastructure, topography, and climate 4
Exploration History 7
Regional Geology 9
Local Geology 11
Mineral Occurrences 13
Geophysics Surveys 13
Geophysics Surveys 13
Drilling Summary 13
Interpretations and Conclusions 13
Recommendations 16
Deposit Types 17
Exploration Guidelines 18
References 19
Statement of Qualifications

Figure 1 ... 3
Figure 2 .. 5
Figure 3 .. 6
Figure 4 .. 10
Figure 5 .. 12

Table 1 .. 4
Table 2 .. 14
Table 3 .. 15
Summary

On 7 February 2010 mineral license 018482M was issued to Kal Malhi of Delta British Columbia. On 19 January 2012 two (2) additional claims were staked by Mr. Malhi to cover a titanium occurrence which had become open in early fall 2011. Mr. Malhi has a 100% interest in both licenses. There are no known back in rights to the property. The property consists of 26 claims under 2 license and is 650 hectares.

The property has potential for titanium mineralization and is underlain by the Alexis River anorthosite which hosts 12 titanium occurrences. All these occurrences are on the property held by Mr. Mahi.
Introduction

Mr. Kal Malhi of Delta, B.C. holds Mineral Rights Licenses 18482M (24 claims) and 19890M (2 claims) in the Alexis River area on southeast Labrador (NTS 13A/10) Figures 1, 2, and 3 show the property location at several scales. Denis F. Walsh, P.Geo. was requested by Mr. Malhi to evaluate the potential for economic titanium mineralization on the property and to prepare a report to satisfy the first assessment requirements. (i.e. $5,200).

Disclaimer

Historical geological reports of the area and of the property were reviewed in order to write this report. The author has not visited the property and has relied on data presented in MODS files Newfoundland and Labrador Department of Natural Resources Geofiles,(Assessment Reports) and other resources available from the Department’s website.. The author has not verified the accuracy of the reports from these sources however the sources are considered to be reliable.

Property Location and Description

The Alexis River property is located on NTS map sheet 13A/10 in the Port Hope Simpson area of south eastern Labrador, as shown on figure 1 and with reference to the Trans-Labrador Highway and Gosse Bay and Port Hope Simpson on figure 2 The property consists of 26 claims under 2 licenses and is 650 hectares. On 7 February 2011 mineral rights license 018482M was issued to Kal Malhi of Delta British Columbia and on 19 January 2012 mineral rights license 019890M was staked by Mr. Malhi. The licenses are shown with reference to the topography on figure 3.
Figure 1. Property Location

Alexis River Licenses
Lic. 018482M & 019890M

Kal Malhi

Alexis River
Figure 1. Property Location
Lic. 018482M & 019890M

Labrador

Scale: 1:5,500,000
Date: Jan 22, 2012
Mr. Malhi holds a 100% interest in the both licenses and author of this report is not aware of any back in rights or claims to the property by other parties.

These claims are administered by the Mining Act of Newfoundland and Labrador and require $200 per claim for year 1 expenditures. This amount increases in $50 increments per year to $400 in year 5. Therefore over 5 years the required expenditure is $1500 per claim.

Table 1 shows the status of the licenses subsequent to submission of this report.

<table>
<thead>
<tr>
<th>License #</th>
<th># of Claims</th>
<th>Date Issuance</th>
<th>Date year 1 work report req’d</th>
<th>Expenditure Required</th>
<th>Exp’d this report</th>
</tr>
</thead>
<tbody>
<tr>
<td>018482M</td>
<td>24</td>
<td>7 Feb 2011</td>
<td>9 Apr 2012</td>
<td>$4,800</td>
<td>$5005</td>
</tr>
<tr>
<td>019480M</td>
<td>2</td>
<td>20 Feb 2012</td>
<td>22 Apr 2013</td>
<td>$400</td>
<td>$405</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total req’d</td>
<td>$5,200</td>
<td>$5405</td>
</tr>
</tbody>
</table>

There are no known parks in the area and the author is not aware of any environmental concerns in any area contained within the claims. As exploration advances permitting requirements from the various regulatory bodies will be obtained.

Accessibility, climate, local resources, infrastructure and topography

There is an airport at Port Hope Simpson where charter and scheduled aircraft can land.

The following is quoted from Wikipedia for reference to air travel.

“Port Hope Simpson Airport ([IATA](https://www.icao.int): YHA), about 1 mi south of town. (347 ft runway)

- Air Labrador, Phone 709 931-2196, [2]. The only carrier providing regular, daily scheduled passenger and freight flights Monday-Friday to Port Hope Simpson.

- Provincial Airlines Ltd., Phone (Toll Free) 1-877-576-3140, [3]. Offers a charter service into Port Hope Simpson “

The Trans-Labrador Highway passes to within 7 km of the property so foot travel to licenses is possible however it may be arduous. If the project advances to the drilling
Figure 2. Distance from Centers

UTM Zone 21, NAD 27
(Distance from Goose Bay - 50 Km. Contour Interval)
(Distance from Port Hope Simpson - 10 Km. Contour Interval)

Scale: 1:2,500,000

Kal Malhi

Alexis River

Goose Bay

Port Hope Simpson

Trans Labrador Highway

Alexis River Licenses
Figure 3. Topography

Kal Malhi
Alexis River
Lic. 018482M & 019890M

NTS 13A10 UTM Zone 21, NAD 27
Jan. 22, 2012
Scale: 1:50,000
The Trans-Labrador Highway passes to within 7 km of the property so foot travel to licenses is possible however it may be arduous. If the project advances to the drilling stage it should be possible to build a road to the property but there is a large tributary that will complicate the construction. Helicopter is still the most efficient means of access.

Summer exploration can take place from early to mid-June until October. Winter sets in late October to November and diamond drilling can take place at any time of year. Mean annual temperatures range from -40°C in winter to +30°C in the summer.

Local wildlife consists mostly of moose, caribou, black bears and various types of small mammals. Black spruce is the most common vegetation in the area. Most of the area underlying this property is burn over with a re-growth of deciduous trees and low bushes. A tributary of the Alexis River flows diagonally across the property from northwest to southeast.

Southeastern Labrador offers a variety of stores to offer provisions to exploration parties, however most specialized exploration will have to be shipped in. Personnel for exploration teams are available along the coast since the provincial government has been offering prospecting courses in the coastal communities for several years.

Topography of the property is marked by a deeply incised river valley through the center of the property from northwest to southeast draining into the main channel of the Alexis River AR 013A/0062 photographs of the property area.

Exploration History

Early knowledge of the area is based mainly on descriptions of coastal localities (; Daly, 1902; Kranck, 1939; Eaton, 1950; Christie, 1951; Douglas, 1953) and 1:500000 scale reconnaissance mapping (Eade, 1962) and mineral exploration (Piloski, 1955) and (Bradley, 1966) of the interior. More recently, complete aeromagnetic coverage and
lake-sediment geochemical data have become available for the region (Geological Survey of Canada, 1974a, 1974b, 1984). More recently the Department of Natural Resources of Newfoundland and Labrador (McQuaig 2002) released result of a till sampling survey which caused a major staking program in 2005 by Tripple Uranium Resources.

The first documented exploration which included the present property areas was a large scale reconnaissance geological mapping/prospecting program carried out by BRINCO in 1954 (Piloski, 1955). They discovered a small massive sulphide showing (thought to be outcrop) in an anorthosite pyroxenite intrusive on the north shore of the Alexis River about 5.5 km west-northwest of Port Hope Simpson. Grab samples from the showing assayed up to 0.85% copper, 0.42% nickel and 0.82% cobalt.

Limited prospecting and sampling were carried out west-northwest of Port Hope Simpson as an initial reconnaissance survey by T.S.J. Consultants Ltd. for Greenshield Resources Inc. in July, 1995. The area of the reported BRINCO Ni-Cu-Co showing on the north shore of the Alexis River and areas of reported sulphide occurrences (Douglas, 1976) close to Bobby's Brook south of the Alexis River were examined and a total of 28 grab samples were taken. The best result, an assay of 0.60% Cu, 0.25% Ni and 0.27% Co, was obtained from a large angular boulder of banded pyroxenite/anorthosite on the north shore of the Alexis River. TSJ Grab sample 535104 reported 6.39 % Ti and several samples reported greater than 1% Ti. Jollife 1997.

Tripple Uranium Resources staked the area in 2005 for uranium potential based on anomalous tills however Ti potential was recognized based on the location of 3 Ti occurrences on Mineral Rights License 12225M (Walsh 2005). Bedrock grab samples in 2005 reported several samples of >10,000 ppm Ti. No follow-up was reported by Tripple
Uranium Resources and the area underlying the present property was excluded from airborne surveys conducted by (Fugro Airborne Surveys Corp. 2007) for Triplle/Capella. (Cole and Janes 2008)

The most recent work in the area has been undertaken by Eagleridge Reources Ltd controlled by Albert Chislett co-founder of Voisey’s Bay. The results of that work are confidential, but year 1 work consisted of an airborne magnetic and electromagnetic survey and prospecting. Year 2 work consisted of line cutting, PEM surveys and diamond drilling. This is from license 16813M which coterminous with license 18482M License 16813M is in good stead until 2018.

Search Minerals and its subsidiary have also been working in the area and have announced significant rare earth element results.

The following from the companies website “VANCOUVER, Feb. 13, 2012 /CNW/ - Search Minerals Inc. ("Search" or the "Company") (TSXV: SMY) and its wholly-owned subsidiary, Alterra Resources Inc., have filed an independent NI 43-101 compliant Technical Report, including a Mineral Resource Estimate, on the 100% owned rare earth element (REE) Foxtrot Project near Port Hope Simpson, Labrador, Canada.”

The Foxtrot property is approximately 70 kilometers south east of Kal Malhi’s property but it is along strike.

Regional Geology:
Labrador contains parts of five structural provinces that record a crustal history ranging from approximately 3.8 to 0.6 Ga. (see figure 4) The oldest rocks are preserved in the Archean cratons of the Nain and Superior provinces. These are bounded by the Lower Proterozoic mobile belts of the Churchill and Makkovik provinces. The Grenville Province, which truncates the Churchill and Makkovik provinces in the south, contains vestiges of an Early Proterozoic mobile belt referred to as the Labrador Orogen.
Figure 4. Geological Provinces

- Grenville Province
- Makkovik Province
- Nain Province
- Southeastern Churchill Province
- Superior Province

Kal Malhi
Alexis River
Figure 4. Geological Provinces
Lic. 018482M & 019890M

Labrador UTM Zone 20, NAD 27
Scale: 1:5,500,000
Date: Jan 22, 2012
In eastern Labrador, the Grenville Province is divided into five distinct tectonometamorphic entities including from north to south: the Groswater Bay; Hawke River; Lake Melville; Mealy Mountains; and Pinware terranes. The terranes are further subdivided into northwest- southeast lithological segments.

Local Geology:
Van Nostrand et al (1992) mapped the AAleexis River area at 1:100,000 scale in the early 1990’s. Gower recompiled the entire Grenville for southern Eastern Labrador in 2010. Map 2010-20 from the set of 26 maps was windowed in on to produce figure 5. From the southwest to the northeast the main lithologies exposed within the project area are roughly:

1. (P3Bgp) Foliated to gneissic megacrystic or porphyritic granitoid rocks, augen gneiss
2. (P3Bgd) Foliated to gneissic granodiorite and compositionally equivalent well banded gneiss;
3. (P3Bum) Massive, weakly or strongly foliated ultramafic rocks, commonly layered and locally showing cumulate textures
4. (P3Ban) Weakly foliated to gneissic anorthosite and leucogabbro-norite;
5. (P3Ass) Quartz-feldspar psammitic schist and gneiss; medium grained and commonly rusty weathering

Lesser units exposed are (P3B am) Amphibolite skialiths, lenses and layers (mainly remnants of former dykes) and (P3Bgd) Foliated to gneissic granite and alkali-feldspar granite, and compositionally equivalent well-banded gneiss.
Figure 5. Geology

Geology Legend
- P3Ass - Quartz-feldspar psammitic schist and gneiss; medium grained and commonly rusty-weathering
- P3Bam - Amphibolite skialiths, lenses and layers (mainly remnants of former dykes)
- P3Ban - Weakly foliated to gneissic anorthosite and leucogabbro
- P3Bgd - Foliated to gneissic granodiorite and compositionally equivalent well-banded gneiss
- P3Bgp - Foliated to gneissic megacrysts or porphyritic granitoid rocks, augen gneiss
- P3Bgr - Foliated to gneissic granite and alkali-feldspar granite, and compositionally equivalent well-banded gneiss
- P3Bum - Massive, weakly or strongly foliated ultramafic rocks, commonly layered and locally showing cumulate textures

- Fault
- Contact
- Ti Occurrence

Kal Malhi
Alexis River
Lic. 018482M & 019890M

NTS 13A/10
UTM Zone 21, NAD 27
Scale: 1:25,000
Jan. 30, 2012
Mineral Occurrences

There are 11 Ti-occurrences on the property with National Mineral Inventory Numbers 013A/10/Ti001 to Ti 011. (see figure 5 for location of these occurrences)

013A/10/Ti001, 002, and 003 were described and in the MODS database and 013A/10/003 was sampled previous to exploration work by Tripple Uranium Resources in 2005. Those assays are in table 2. from Gower 2010.

During work by the author for Tripple Uranium Resources several rock samples were submitted for assay and the results formed part of the assessment report 13A/0062 (Walsh 2005) The results for samples reporting >10,000 ppm Ti are shown in table 3 along with values for Fe, V, and P.

Geophysics Surveys

The area of the claims was covered by the Geological Survey of Canada Aeromagnetic map 5980G GSC 1974. The area was excluded from the Fugro survey of 2007 for Tripple Uranium/Capella

Drilling Summary

The author is not aware of any drilling that has occurred on this property.

Interpretations and Conclusions

Based of analysis of rocks collected by Tripple Uranium Resources in 2006 and analyses released by Gower in 2010 the property holds potential for titanium mineralization.
Designated Cu occurrence (based on anomalous Cu (475 ppm; Table 40) in a sample of epidote-altered gabbro that contains common pyrite and minor chalcopyrite (Jolliffe, 1997), reporting on behalf of Greenshields Resources.

Second Cu occurrence. One identified during 1:100,000-scale mapping and comprises a 4-m-wide rusty zone containing disseminated sulphide (mainly pyrite) hosted by straight-banded dioritic to amphibolitic gneiss and minor concordant granitic material. The other

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Fe₂O₃</th>
<th>MgO</th>
<th>Cu ppb</th>
<th>Ni ppm</th>
<th>Co ppm</th>
<th>Cr ppm</th>
<th>Ag ppm</th>
<th>Au ppb</th>
<th>V ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG01-001A</td>
<td>11.41</td>
<td>16.63</td>
<td>58.58</td>
<td>7.92</td>
<td>54</td>
<td>81</td>
<td>84</td>
<td>862</td>
<td>0.1</td>
<td>n.d.</td>
<td>930</td>
</tr>
<tr>
<td>CG01-001B</td>
<td>13.46</td>
<td>14.75</td>
<td>57.72</td>
<td>10.45</td>
<td>26</td>
<td>87</td>
<td>103</td>
<td>696</td>
<td>0.1</td>
<td>n.d.</td>
<td>905</td>
</tr>
<tr>
<td>CG01-001C</td>
<td>18.18</td>
<td>12.39</td>
<td>53.52</td>
<td>12.39</td>
<td>507</td>
<td>262</td>
<td>194</td>
<td>581</td>
<td>0.2</td>
<td>11</td>
<td>658</td>
</tr>
<tr>
<td>CG01-001D</td>
<td>0.86</td>
<td>22.16</td>
<td>66.50</td>
<td>2.27</td>
<td>n.d.</td>
<td>87</td>
<td>113</td>
<td>1829</td>
<td>n.d.</td>
<td>n.d.</td>
<td>1265</td>
</tr>
<tr>
<td>CG01-001E</td>
<td>23.01</td>
<td>8.24</td>
<td>51.09</td>
<td>15.73</td>
<td>400</td>
<td>215</td>
<td>181</td>
<td>430</td>
<td>0.3</td>
<td>n.d.</td>
<td>517</td>
</tr>
</tbody>
</table>

Note: n.d., not detected
Table 3: Mineral occurrences on Licenses 18482M & 19890M

<table>
<thead>
<tr>
<th>NMNO</th>
<th>DEPNAME</th>
<th>EAST</th>
<th>NORTH</th>
<th>SAMPLE #</th>
<th>Accur #</th>
<th>TiO2 (ppm)</th>
<th>V (ppm)</th>
<th>P (ppm)</th>
<th>Fe %</th>
</tr>
</thead>
<tbody>
<tr>
<td>013A/10/Ti 001 MODS Card</td>
<td>Alexis River West #1</td>
<td>504992</td>
<td>58398619</td>
<td>No analysis available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>013A/10/Ti 002 MODS Card</td>
<td>Alexis River West #2</td>
<td>504829</td>
<td>5839441</td>
<td>No analysis available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>013A/10/Ti 003 MODS Card</td>
<td>Alexis River West #3</td>
<td>504490</td>
<td>5840350</td>
<td>Analyses by C. Gower in table 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>013A/10/Ti 004 MODS Card</td>
<td>Alexis River West #5</td>
<td>504606</td>
<td>5839780</td>
<td>AR-065</td>
<td>122239 >10,000</td>
<td>1480 <100</td>
<td>>10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>013A/10/Ti 005 MODS Card</td>
<td>Alexis River West #6</td>
<td>504873</td>
<td>5839914</td>
<td>AR-066</td>
<td>122240 8480</td>
<td>184</td>
<td>346</td>
<td>9.01</td>
<td></td>
</tr>
<tr>
<td>013A/10/Ti 006 MODS Card</td>
<td>Alexis River West #8</td>
<td>505027</td>
<td>5839622</td>
<td>AR-086</td>
<td>122262 >10,000</td>
<td>974</td>
<td>165 >10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>013A/10/Ti 007 MODS Card</td>
<td>Alexis River West #9</td>
<td>505284</td>
<td>5839811</td>
<td>AR-089</td>
<td>122266 >10,000</td>
<td>1281</td>
<td>165 >10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>013A/10/Ti 008 MODS Card</td>
<td>Alexis River West #10</td>
<td>504075</td>
<td>5841564</td>
<td>AR-092</td>
<td>122269 >10,000</td>
<td>188</td>
<td>8922 >10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>013A/10/Ti 009 MODS Card</td>
<td>Alexis River West #11</td>
<td>503937</td>
<td>5841700</td>
<td>AR-099</td>
<td>122277 >10,000</td>
<td>470</td>
<td>283 >10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>013A/10/Ti 010 MODS Card</td>
<td>Alexis River West #12</td>
<td>504041</td>
<td>5841523</td>
<td>AR-101</td>
<td>122279 >10,000</td>
<td>171</td>
<td>8660 >10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>013A/10/Ti 011 MODS Card</td>
<td>Alexis River West #13</td>
<td>504072</td>
<td>5841560</td>
<td>AR102</td>
<td>122280 >10,000</td>
<td>783</td>
<td>232 >10.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recommendations

The licenses should be systematically traversed by magnetic and gravity surveys with the objective of locating areas of high gravity and low magnetic signature indicative of potential cumulate titanium ore. in anorthositic rocks
Deposit Type

Ilmenite deposits of subtype 26.1 rarely host more than 300 Mt of ore; they contain from 10 to 45% TiO₂, from 32 to 45% Fe, and less than 0.2% V. The ratios of Fe:Ti are usually about 2, and the contents of Cu, Cr, Mn, and Ni commonly range from 0.05 to 0.2% for each element. Sulphide minerals and apatite are present in low and variable amounts. Ore treatment processes currently in use for the production of titanium dioxide require ore concentrates that contain at least 45% TiO₂ (pure ilmenite contains 52.7% TiO₂).

The two largest iron-titanium deposits of subtype 26.1 which are hosted in anorthositic intrusive rocks are the Lac Tio deposit in Canada and the Tellnes deposit southwestern Norway. Lac Tio is a flat-lying irregular tabular intrusive mass, 1100 m long and 1000 m wide, which is estimated to contain more than 125 million tonnes of ore averaging 32% TiO₂ as ilmenite and 36% FeO. The high-grade ore contains as much as 75% ilmenite and 20% hematite. The Tellnes deposit is about 2800 m long, 400 m wide, and at least 350 m deep. Estimated reserves are 300 million tonnes of ore averaging 18% TiO₂ as ilmenite, 2% magnetite, and 0.25% sulphides.

Titaniferous magnetite deposits of subtype 26.2 range in size from one million tonnes to more than 1000 million tonnes. They usually contain from 20 to 45% iron and from 2 to 20% TiO₂. Ratios of Fe:Ti range from 40:1 to 2:1 and are commonly about 5:1. The average content of V is about 0.25%, Cr is present in trace amounts, and the content of P₂O₅ is variable, but usually less than 7.1%.
Exploration Guidelines

1. Both layered and massive ilmenite deposits, subtype 26.1, are commonly hosted in anorthosite*. Titaniferous magnetite deposits, subtype 26.2, are commonly hosted in gabbroic intrusive complexes.

2. Massive ilmenite and hemo-ilmenite deposits, subtype 26.1, commonly have a distinctive negative magnetic anomaly, or irregular patterns of negative and positive anomalies that mark erratic polarization in segments of the deposits.

3. Intrusive rocks bearing significant concentrations of Fe-Ti oxide are characterized by high positive magnetic anomalies that show broad, smooth profiles or patterns.

4. Iron and titanium oxide deposits and the mafic intrusive rocks which host them have higher gravity anomalies than the surrounding granitic and gneissic rocks.

5. Iron-titanium oxide minerals in stream sediments can be used as effective markers or tracers in exploration for ilmenite and magnetite deposits.

6. Ilmenite deposits of subtype 26.1 appear to be best developed in anorthosite intrusions located along deep-seated fault zones and fracture systems as developed at the margins of major tectonic provinces and belts. In Canada, for example, the best deposits are associated with intrusive complexes along the St. Lawrence River lineament near the southeast margin of the Grenville Province (Gross, 1977).

7. The host intrusive complexes commonly consist of a number of differentiated phases of mafic rock that range in composition from anorthosite, through gabbro and norite to diorite and syenite.*

8. Ilmenite deposits (subtype 26.1) are associated with anorthosite intrusions in which the Fe:Ti ratios in the disseminated metal oxides are less than 3, usually about 2.

9. Titaniferous magnetite deposits (subtype 26.2) are commonly associated with the magnesian, labradorite phases of mafic intrusions, or igneous phases related to them. The Fe:Ti ratios in their metallic oxide minerals vary from 40:1 to 2:1 and are commonly about 5:1.

10. Titaniferous magnetite deposits of subtype 26.2 are most commonly developed in:
 a) the gabbroic phases near the margins of gabbro intrusive stocks;
 b) in the upper stratigraphic parts of mafic layered intrusions; and
 c) in the gabbro-diorite stocks, dykes, and sills which are associated with major gabbro intrusions.
References

Beavan, A P, 1954
Report on exploration in 1953 in Labrador and Newfoundland

Cole, B and Janes, S 2008

Christie, A M

Daly, R A

Douglas, G V

Eaton, L
1950: Report on C W Tessiers concession in eastern Labrador. H A Brassert and
Company Unpublished report [GSB# 003D/0001]

Gower, C F
2010Geology of the Port Hope Simpson area [NTS sheets 3D/12 & 13 and 13A/09, 10,
15, 16], southeastern Labrador; Government of Newfoundland and Labrador, Department
of Natural Resources, Geological Survey Branch, Open File LAB/1565, [Map 2010-20],
2010.

Jolliffe, T S 1997
Second year assessment report on geological, geochemical and diamond drilling
exploration for licences 2559m-2560m, 4160m-4166m, 4367m-4375m, 4412m-4413m,
4602m, 4689m and 4766m-4772m on claims in the Alexis River and Fox Harbour areas,
southeastern Newfoundland Greenshield Resources Incorporated, Rock Laboratories
Limited, Alcudia Capital and Bryce, R C Newfoundland and Labrador Geological
Survey, Assessment File LAB/1205, 1997, 115 pages

Kranck, E H
1939: Bedrock geology of the seaboard region of Newfoundland Labrador.
Newfoundland Geological Survey Bulletin no. 19, 50 pages. [GSB# LAB/0006]

McCuaig, S 2002
Till geochemistry of the Alexis River region (N.T.S. areas 13A/10, 14 and 15), Labrador
pages. NTS: 13A/10, 13A/14, 13A/15

van Nostrand, T, Dunphy, D, and Eddy, D 1992:
Geology of the Alexis River map region, Grenville Province, southeastern Labrador. In
Current Research. Geological Survey Branch, Department of Mines and Energy,
Walsh, D F 2007

Woolham, R W and Mersereau, T G 1997

First year assessment report on geophysical exploration for licences 2559m-2560m, 4160m-4166m, 4367m-4375m, 4412m-4413m, 4602m and 4766m-4772m on claims in the Alexis River area, Labrador, 2 reports Greenshield Resources Incorporated Newfoundland and Labrador Geological Survey, Assessment File LAB/1222, 1997, 69 pages

Statement of Qualifications

I, Denis F. Walsh, of Paradise Newfoundland and Labrador, Canada do hereby certify:

- That I am a graduate of the Memorial University of Newfoundland, St, John’s Newfoundland and Labrador, with a B.Sc. in Geology (1974)
- I have been employed as a geologist since graduation.
- That I am registered with the Professional Engineers and Geoscientists Newfoundland and Labrador (PEGNL) (member #3280)
- That the information, conclusions and recommendations in this report are based on a review of the literature stated in the bibliography.
- This report may be used for the development of the property, provided that no portion will be used out of context in such a manner as to convey meanings different from that set out in the whole.

Dated:
Signed:

Denis F. Walsh, P. Geo.
APPENDIX A

Expenditures Year 1
License 18482M $5,000.00
License 19890M $405.00

Personnel Employed
Denis F. Walsh Research & Report compilation $4,200.00
Peter Bruce Digital Mapping $500.00
Sub -total $4,700.00
Plus 15% $705.00
Total $5,405.00